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GENERAL EDITOR S PREFACE

The Source Books in this series are collections of classical papers that have shaped the

structures of the various sciences. Some of these classics are not readily available and many
of them have never been translated into English, thus being lost to the general reader and

frequently to the scientist himself. The point of this series is to make these texts readily

accessible and to provide good translations of the ones that either have not been translated

at all or have been translated only poorly.

The series was planned originally to include volumes in all the major sciences from the

Renaissance through the nineteenth century. It has been extended to include ancient and

medieval Western science and the development of the sciences in the first half of the present

century. Many of these books have been published already and several more are in various

stages of preparation.

The Carnegie Corporation originally financed the series by a grant to the American

Philosophical Association. The History of Science Society and the American Association

for the Advancement of Science have approved the project and are represented on the

Editorial Advisory Board. This Board at present consists of the following members.

Marshall Clagett, History of Science, University of Wisconsin

I. Bernard Cohen, History of Science, Harvard University

C. J. Ducasse, Philosophy, Brown University

Ernest Mayr, Zoology, Harvard University

Ernest A. Moody, Philosophy, University of California at Los Angeles

Ernest Nagel, Philosophy, Columbia University

Harlow Shapley, Astronomy, Harvard University

Harry Woolf, History of Science, Johns Hopkins University

The series was begun and sustained by the devoted labors of Gregory D. Walcott and

Everett W. Hall, the first two General Editors. I am indebted to them, to the members of

the Advisory Board, and to Joseph D. Elder, Science Editor of Harvard University Press,

for their indispensable aid in guiding the course of the Source Books.

Edward H. Madden, General Editor

Department of Philosophy

State University of New York at Buffalo

Buffalo, New York
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PREFACE

This Source Book contains selections from mathematical writings of authors in the Latin

world, authors who lived in the period between the thirteenth and the end of the eighteenth

century. By Latin world I mean that there are no selections taken from Arabic or other

Oriental authors, unless, as in the case of Al-KhwarizmI, a much-used Latin translation

was available. The choice was made from books and from shorter writings. Usually only a

significant part of the document has been taken, although occasionally it was possible to in-

clude a complete text. All selections are presented in English translation. Reproductions
of the original text, desirable from a scientific point of view, would have either increased

the size of the book far too much, or made it necessary to select fewer documents in a

field where even so there was an embarras du choix. I have indicated in all cases where the

original text can be consulted, and in most cases this can be done in editions of collected

works available in many university libraries and in some public libraries as well.

It has not often been easy to decide to which selections preference should be given. Some
are fairly obvious; parts of Cardan’s Ars magna, Descartes’s Geometrie, Euler’s Methodus in

-

veniendi, and some of the seminal work of Newton and Leibniz. In the selection of other

material the editor’s decision whether to take or not to take was partly guided by his per-

sonal understanding or feelings, partly by the advice of his colleagues. It stands to reason

that there will be readers who miss some favorites or who doubt the wisdom of a particular

choice. However, I hope that the final pattern does give a fairly honest picture of the mathe-
matics typical of that period in which the foundations were laid for the theory of numbers,
analytic geometry, and the calculus.

The selection has been confined to pure mathematics or to those fields of applied mathe-
matics that had a direct bearing on the development of pure mathematics, such as the

theory of the vibrating string. The works of scholastic authors are omitted, except where,

as in the case of Oresme, they have a direct connection with writings of the period of our
survey. Laplace is represented in the Source Book on nineteenth-century calculus.

Some knowledge of Greek mathematics will be necessary for a better understanding of

the selections: Diophantus for Chapters I and II, Euclid for Chapter III, and Archimedes
for Chapter IV. Sufficient reference material for this purpose is found in M. R. Cohen and
I. E. Drabkin, A source book in Greek science (Harvard University Press, Cambridge, Massa-
chusetts, 1948). Many of the classical authors are also easily available in English editions,

such as those of Thomas Little Heath.

IX



X PREFACE

It was often a difficult task to decide on how much of the archaic flavor should be pre-
served, especially in notation. I have tried to find a middle road by keeping some archaic
forms, explaining them in notes, and modernizing other places while indicating what the
original text looked like. Some of the illustrations may give additional insight.

The editor takes full responsibility for the translation. Where already existing English
translations have been utilized, they have been checked with the original. Remarks by the
editor in the Selections are indicated by square brackets.

Those in search of English translations of older mathematical writings, not included in
this Source Book, should consult D. E. Smith, A source book in mathematics (McGraw-Hill,
New York, 1929, Dover, New York, 1959), Henrietta 0. Midonick, The treasury of mathema-
tics (Philosophical Library, New York, 1965), and further D. J. Struik, “A selected list of
mathematical books and articles published after 1200 and translated into English,” Scripta
Mathematica 15 (1949), 115-131.

The following institutions have permitted the use of certain texts for our selections:

the Stevin Committee of the Royal Netherlands Academy of Sciences for Selections 1.3
and IV. 1; Akademie Verlag, Berlin, for Selection 1. 11; the University of California
Press, Berkeley, California, for Selection 1.14; E. J. Brill. Ltd., Leiden, for Selection III.l;
the University of Wisconsin Press, Madison, Wisconsin, for Selection III. 2; Northwestern
University Press, Evanston, Illinois, for Selections IV. 1 and IV. 2; Teachers College,
Columbia University, New York, for Selection IV. 10; the Open Court Publishing Co.,
La Salle, Illinois, for Selection IV. 14; the Royal Society of Edinburgh, the Royal Society,
London, the University Library, Cambridge, and the British Museum, London, for Selec-
tion V.4.

Thanks for encouragement and advice are due to many colleagues, in particular to
C. B. Boyer, I. B. Cohen, J. E. Hofmann, J. F. Scott, C. J. Scriba, Maria Spoglianti, R.
Taton, D. T. Whiteside, and A. B. Yuskevic; and especially to Ruth Ramler Struik, who
also contributed to the translations from the Latin. For the drawings I am obliged to Alfonso
Vera Mackintosh, Jaime Barcena Armento, Federico A. Grageda Venegas, Mrs. Joanna
Muckenhoupt Enzmann, and W. Minty, and for generous editorial care to Mr. J. D. Elder
of the Harvard University Press.

D. J. Struik
Belmont, Massachusetts

November 1967
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CHAPTER I ARITHMETIC

The study of mathematics in medieval Latin Europe, 1 after the eleventh century, was
stimulated by Latin translations from the Greek and, especially, from the Arabic. They
were prepared in those places where the contact between the Christian and the Islamic

civilizations was the most intimate, notably in Sicily, Southern Italy, and Spain. Some of

the most prolific translators were Adelard of Bath, Robert of Chester, and Gerhard of

Cremona in the twelfth century and Johannes Campanus in the thirteenth. In this way Latin

Europe became acquainted with the geometry of Euclid (c. 300 b.c.), originally composed
in Greek (and previously known only through secondhand abstracts), and the arithmetic and
algebra developed in the countries of Islam. Here the author with perhaps the greatest

influence was Mohammed Al-KhwarizmI, who worked at Bagdad and wrote his Arabic

in the early part of the ninth century. His name is preserved in our term “algorithm,” and
our word “algebra” is derived from the Arabic title of Mohammed’s book on equations

(see Chapter II).

It was through Islamic channels that Latin Europe became acquainted with our present

decimal position system of numbers, based on the ten symbols which we now write 1, 2, 3,

4, 5, 6, 7, 8, 9, 0. Their gradual penetration into Europe may have come about, in ways only

partially traceable, along the trade routes that connected the Christian and the Islamic

worlds. It was also accomplished through scholarly manuscripts, among which those by
Al-KhwarizmI and the learned merchant Leonardo of Pisa had a considerable reputation.

Leonardo’s Liber abaci (1202) begins with the introduction of the ten symbols and then
develops an arithmetic based on these symbols, followed by a theory of equations.

With Fermat, in the first half of the seventeenth century, begins the study of the abstract

theory of numbers. But it was not until a century later that a first-class mathematician
accepted Fermat’s challenge. Euler’s work, starting around 1730, marks the beginning of the

period of continual research in number theory. But for many years Euler worked almost
alone in this field. Only in the second half of the eighteenth century was he joined by some
others, such as Lagrange and Legendre. This phase can be said to have ended with the great

texts by Legendre (1797-98) and Gauss (1801). The work of the young Gauss inaugurates

a new phase in the history of number theory.

1 We use the term Latin Europe to denote those parts of Europe in which Latin was the
principal language employed by the literate for communication. It comprised chiefly Italy,
Christian Spain, France, Germany (with the Low Countries), England, and Scandinavia.

1
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I ARITHMETIC

In the choice of the selections, especially those of Euler, we had to be fairly arbitrary. We
decided to concentrate on power residues. The reader who wants to know more about

eighteenth-century number theory should consult M. Cantor, Vorlesungen uber Geschichte

der Mathematik, vol. Ill (Teubner, Leipzig, 1898) and especially, in vol. IV (1908), the

article by F. Cajori. Further details can be found in the three volumes of L. E. Dickson,

History of the theory of numbers (Carnegie Institution, Washington, D.C., 1919-1923; 2d ed.,

1934).

Among the problems solved in the Liber abaci one has acquired considerable fame. It may
well have been invented by Leonardo, and with it we open our collection of texts.

1 LEONARDO OF PISA. THE RABBIT PROBLEM

In Leonardo of Pisa, also called Fibonacci, we meet the first outstanding mathematician of

the Latin Middle Ages. He was a merchant of Pisa who traveled widely in the world of

Islam, and took the opportunity of studying Arabic mathematical writings. His work is

in the spirit of the Arabic mathematics of his day, but also reveals his own position

as an independent thinker. Leonardo’s Liber abaci (1202, revised 1228) circulated widely

in manuscript, but was published only in 1857: Scritti di Leonardo Pisano (pubbl. da B.

Boncompagni, Tipografia delle scienze matematiche e fisiche, Rome; 2 vols., 459 pp.). It is

a voluminous compendium on arithmetic and its mercantile practice (even finger counting),

the theory of linear, quadratic, and simultaneous sets of equations, square and cube roots.

One of the principal features of the book is that, from the first page on, Leonardo introduces

and uses the decimal position system. The first chapter opens with the sentence: “These

are the nine figures of the Indians

987654321

With these nine figures, and with this sign 0 which in Arabic is called zephirum, 1 any

number can be written, as will below be demonstrated.”

We confine ourselves here to presenting, in translation from the Latin, two interesting

sections from the Liber abaci that may very well be original contributions. Since the first

introduces paria coniculorum, we know it as the rabbit problem. It stands by itself (vol. I,

283-284), sandwiched in between other problems; the one before it deals with the so-called

perfect numbers 6, 28, 496, . .
.

,

and the one after with the solution of a system of four linear

equations with four unknowns.

How many pairs of rabbits can be bred from one pair in one year?

A man has one pair of rabbits at a certain place entirely surrounded by a wall.

We wish to know how many pairs can be bred from it in one year, if the nature

of these rabbits is such that they breed every month one other pair and begin to

1 Zephirum, zephyr, from Arabic as-sifr, literal translation of Sanskrit sunya = empty,
has in its turn led to French chiffre, German Ziffer, and English zero and cipher. The mean-
ing of these terms is either zero or number digit in general, which shows the importance
attached to the 0 in the understanding of the decimal position system, when in the later

Middle Ages it gradually penetrated Latin Europe.
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pairs

1

breed in the second month after their birth. Let the first pair breed a pair in the

first month, then duplicate it and there will be 2 pairs in a month. From these

pairs one, namely the first, breeds a pair in the second month, and thus there

are 3 pairs in the second month. From these in one month two will become
pregnant, so that in the third month 2 pairs of rabbits will be born. Thus there

are 5 pairs in this month. From these in the same month 3 will be pregnant, so

that in the fourth month there will be 8 pairs. From these pairs 5 will breed 5

other pairs, which added to the 8 pairs gives 13 pairs in the

fifth month, from which 5 pairs (which were bred in that same
month) will not conceive in that month, but the other 8 will be

pregnant. Thus there will be 21 pairs in the sixth month. When
we add to these the 13 pairs that are bred in the 7th month,

then there will be in that month 34 pairs . .
.
[and so on, 55, 89,

144, 233, 377, . . .]. Finally there will be 377. And this number
of pairs has been born from the first-mentioned pair at the

given place in one year. You can see in the margin how we have

done this, namely by combining the first number with the

second, hence 1 and 2, and the second with the third, and the

third with the fourth ... At last we combine the 10th with

the 11th, hence 144 with 233, and we have the sum of the

above-mentioned rabbits, namely 377, and in this way you can

do it for the case of infinite numbers of months. 2

first 2

second 3

third 5

fourth 8

fifth 13

sixth 21

seventh 34

eighth 55

ninth 89

tenth 144

eleventh 233

twelfth 377

Here is a section (I, 24) in which Leonardo introduces a kind of continued fraction, which
eca

writes -rrr ,
or in our notation:

fdb

eca

fdb

e

c+f
a + d

b

adf + cf + e a cl ell
bdf " b

+
d'b

+
f'b'd'

Below some line [branchlet, virgula] let there be 2, 6, 10, and above the 2 be 1,

above 6 be 5, and above 10 be 7, which appears as \ l f0 . The 7 above 10 at the

head of the line represents seven-tenths and the 5 above 6 denotes five-sixths

2 This sequence of numbers, 1, 2, 3, 5, 8 with the property that un =
un -

1

4- un- 2 t «0 — 1, Wi = 1, is called a Fibonacci series. It has been the subject of many
investigations, and is closely connected with the golden section, that is, the division of a line

segment AB by a point P such that AP :AB = PB : AP. See, for example, R. C. Archibald,
“The golden section,” American Mathematical Monthly 25 (1918), 232-238; D’Arcy W.
Thompson, On growth and form (Cambridge University Press, New York, 1942), 912-933;
H. S. M. Coxeter, “The golden section, phyllotaxis, and Wythoff’s game,” Scripta Mathe-
matica 19 (1950), 135—143; E. B. Dynkin and W. A. Uspenski, Mathematische Unterhaltungen

,

II (Deutscher Yerlag der Wissenchaften, Berlin, 1956); and N. N. Vorob’ev, Fibonacci
numbers, trans. by H. Mors (Blaisdell, New York, London, 1961).
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of the decimal part and 1 above 2 denotes half of the sixth of the decimal
part. . .

3 We shall say that fractions which are on a branch [virgd] will be in
grades, so that the first grade of them is the fraction which is at the head of the
branch to the right. The second grade is the fraction that follows towards the
left. For instance, in the branch above, hence in the are in the first

grade of this branch, f in the second one . . .

2 RECORDE. ELEMENTARY ARITHMETIC

With the growing interest in mercantile reckoning and the spread of printing, the number
of textbooks of elementary arithmetic increased rapidly from the latter half of the fifteenth
century onward. Their character has been described in L. C. Karpinski, The history of
arithmetic (Rand McNally, Chicago, 1925) and in Smith, History of mathematics, II, chaps.
1-3, with many illustrations. Smith, Source hook, 1-12, has an English translation of a
section of the so-called Treviso arithmetic of 1478 (the first printed arithmetic). Typical of
all is their introduction to the art of reckoning with the aid of the decimal position system,
with digits almost or exactly the same as those we use. Many books have chapters on finger
reckoning and on the use of counters for computation on an abacus. Notations for addition,
subtraction, multiplication, and division still vary, though the use of + and - for addition
and subtraction is fairly common. As an example we present here, in facsimile, some pages
of the first arithmetic printed in the English language, The ground of artes by Robert
Recorde (c. 1510-1558). Recorde, a Cambridge M.D. and physician to Edward VI and Mary
Tudor, wrote several books on mathematics and astronomy that were long in use in England.
The ground of artes, first published in London between 1540 and 1542 (the oldest extant
edition has the date 1543), was regularly reprinted and reedited; there exists an edition of
1699.

In the pages that we reproduce (Figs. 1, 2, 3) we see how Recorde performed division in
Arabic numerals, and how he taught addition by means of counters, which have long been
in use and are still popular in Russia, Japan, and China. In the United States they are used
by Chinese laundrymen and restaurant workers, and on baby pens. Recorde used the + and

signs, and in his algebra, The whetstone of witte (London, 1557), he introduced our sign
for equality:

I will sette as I doe often in woorke use, a paire of paralleles, or Gemowe lines

of one lengthe, thus: — ,
bicause noe.2. thynges, can be moare equalle.

In his use of the strange word “Gemowe” we see an example of Recorde’s attempt to
substitute English technical words for the current Latin ones. Stevin tried the same in

3 Hence = iV + f-rS + Li' To On connections with an Islamic and perhaps
pre-Islamic calculus of fractions see Cantor, Qeschichte, I, 813.



RECORDE. ELEMENTARY ARITHMETIC 2
|

5
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Dutch, Kepler in German. The only one who was partly successful was Stevin. “Gemowe,”
also “gemew,” means twin (French gemeaux, Latin gemini).

On Recorde see F. M. Clarke, “New light on Robert Recorde,” Isis 8 (1926), 50-70; see

also L. D. Patterson, Isis 42 (1951), 208-218.

For those who find it difficult to read the text, we transcribe here, in slightly modernized
form, page 84v

,
beginning with the third line. It is a discussion betweenM

,
the master, and

8, the scholar:

S. So is it, and also more certainer, for such as I am, that might quickly err in

multiplying, especially being smally practised therein. M

.

Then prove in some
brief example whether you can do it, and so will we make an end. S. I would
divide 38468 by 24, therefore first I set the table thus. Then set I the two sums
of division thus. And over the divisor I find 38, which I seek in the table, and
find it not, therefore take I the next beneath it, which the table has, and that is

24, the divisor itself, against which is set 1 ,
which I take for the quotient, which

I set in his place. And now I need not to multiply the divisor by it, but only to

withdraw the divisor out of the 38 that is over it, and so remains 14, as thus.
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3 STEVIN. DECIMAL FRACTIONS

The introduction of decimal fractions as a common computational practice can be dated
back to the Flemish pamphlet De Thiende, published at Leyden in 1585, together with a
French translation, La Disme, by the Flemish mathematician Simon Stevin (1548-1620),
then settled in the Northern Netherlands. It is true that decimal fractions were used by the
Chinese many centuries before Stevin and that the Persian astronomer Al-Kashi used both
decimal and sexagesimal fractions with great ease in his Key to arithmetic (Samarkand, early
fifteenth century). 1 It is also true that Renaissance mathematicians such as Christoff
Rudolff (first half sixteenth century) occasionally used decimal fractions, in different types
of notation. But the common use of decimal fractions, at any rate in European mathematics,
can be directly traced to De Thiende, especially after John Napier (see p. 13) had modified
Stevin s notation into the present one with the decimal point or comma.

Stevin s notation strikes us as clumsy, showing an unnecessary relation to the notation of
sexagesimal fractions. However, for beginners in the difficult arts of multiplication and
division, his method may have had a certain advantage. See further the introduction to the
edition of De Thiende in The principal works ofSimon Stevin, IIA (Swets-Zeitlinger, Amster-
dam, 1958), 373-385. We take from this edition the English translation, based on that of
Richard Norton and published in 1608. Another English translation, by V. Sanford, can
be found in Smith, Source book, 20-34.

THE FIRST PART
Of the Definitions of the Dime.

THE FIRST DEFINITION

Dime is a kind of arithmetic, invented by the tenth progression, consisting in charac-
ters of ciphers, whereby a certain number is described and by which also all accounts
which happen in human affairs are dispatched by whole numbers, without fractions
or broken numbers.

Explication. Let the certain number be one thousand one hundred and eleven,
described by the characters of ciphers thus 1111, in which it appears that each
1 is the 10th part of his precedent character 1 ;

likewise in 2378 each unity of 8
is the tenth of each unity of 7 ,

and so of all the others. But because it is con-
venient that the things whereof we would speak have names, and that this
manner of computation is found by the consideration of such tenth or dime
progression, that is that it consists therein entirely, as shall hereafter appear,
we call this treatise fitly by the name of Dime, whereby all accounts happening
in the affairs of man may be wrought and effected without fractions or broken
numbers, as hereafter appears.

THE SECOND DEFINITION

Every number propounded is called COMMENCEMENT, whose sign is thus @.
Explication. By example, a certain number is propounded of three hundred

1 P. Luckey, Die Rechenkunst bei OamMd b. Mas'ud al-KaSi (Steiner, Wiesbaden, 1951).
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sixty-four: we call them the 364 commencements, described thus 364©, and so

of all other like.

THE THIRD DEFINITION

And each tenth part of the unity of the COMMENCEMENT we callthe PRIME,
whose sign is thus ®, and each tenth part of the unity of the prime we call the

SECOND, whose sign is ©, and so of the other: each tenth part of the unity of the

precedent sign, always in order one further.

Explication. As 3® 7© 5® 9®, that is to say: 3 primes, 7 seconds, 5 thirds,

9 fourths, and so proceeding infinitely, but to speak of their value, you may note

that according to this definition the said numbers are j-0-, Yna- ,

-

0VcT- roooo>
together rbWo- and likewise 8© 9® 3© 7® are worth 8,

-

ro
7

0-j, together

8iWo> and so of other like. Also you may understand that in this dime we use no
fractions, and that the multitude of signs, except ®, never exceed 9, as for

example not 7® 12®, but in their place 8® 2®, for they value as much.

THE FOURTH DEFINITION

The numbers of the second and third definitions beforegoing are generally called

DIME NUMBERS.
The End of the Definitions

THE SECOND PART OF THE DIME.
Of the Operation or Practice.

THE FIRST PROPOSITION: OF ADDITION

Dime numbers being given, how to add them to find their sum.

The Explication Propounded: There are 3 orders of dime numbers given, of

which the first 27®, 8®, 4®, 7®, the second 37®, 6®, 7®, 5®, the third

875®, 7®, 8®, 2®.
The Explication Required: We must find their total sum.

Construction. The numbers given must be placed in order

as here adjoining, adding them in the vulgar manner of

adding of whole numbers in this manner. The sum (by the

first problem of our French Arithmetic

2

)
is 941304, which

are (that which the signs above the numbers do show)

941® 3® 0© 4®. I say they are the sum required.

® ® ©
7 8 4

7 6 7

5 7 8

9 4 1 3 0 4

Demonstration. The 27® 8® 4© 7® given make by the 3rd definition before

27, A, ToID ToVo- together 27 f
8
0
4
0
7

0
- and by the same reason the 37® 6® 7© 5®

shall make 37 n/oDJ and the 875® 7® 8© 2® will make 875-
1
7

0
8
0
2
(j ,

which three

numbers make by common addition of vulgar arithmetic 941AA- But so much
is the sum 941® 3® 0© 4®; therefore it is the true sum to be demonstrated.

Conclusion: Then dime numbers being given to be added, we have found their

sum, which is the thing required.

2 L’Arithmetique de Simon Stevin de Bruges (Leyden, 1585); see Stevin, The principal
works (Swets-Zeitlinger, Amsterdam), vol. IIB (1958). Problem I (p. 81) is: “Given two
arithmetical integer numbers. Find their sum.”
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Note that if in the number given there want some signs of © 0 (2)

their natural order, the place of the defectant shall be filled. As 8 5 6

for example, let the numbers given be 8© 50 6(2) and 5© 7©, 5 0 7

in which the latter wanted the sign of 0; in the place thereof I 3 6 (T

shall 00 be put. Take then for that latter number given

5© 00 7©, adding them in this sort.

This advertisement shall also serve in the three following propositions, where-
in the order of the defailing figures must be supplied, as was done in the former

example.

THE SECOND PROPOSITION: OF SUBTRACTION

A dime number being given to subtract, another less dime number given: out of the

same to find their rest.

Explication Propounded: Be the numbers given 237© 50 7© 8© and
59© 70 3© 9©.

The Explication Required: To find their rest.

Construction. The numbers given shall be placed in this © 0 © ©
sort, subtracting according to vulgar manner of sub- 2 3 7 5 7 8

traction of whole numbers, thus. 5 9 7 3
9~

1 7 7 8 3 9

The rest is 177839, which values as the signs over them do denote 177© 80
3© 9®, I affirm the same to be the rest required.

Demonstration. The 237© 50 7© 8® make (by the third definition of this

Dime) 237^-, --
0
®
0-q, together 237i 0̂

-
0-, and by the same reason the 59© 7®

3© 9® value 59j
7

fif0-. which subtracted from 2371
s
0
2
0
8
0-, there rests 177-i^, but

so much doth 177© 8® 3© 9® value; that is then the true rest which should be
made manifest.

Conclusion. A dime being given, to subtract it out of another dime number,
and to know the rest, which we have found.

THE THIRD PROPOSITION: OF MULTIPLICATION

A dime number being given to be multiplied, and a multiplicator given: to find their

product.

The Explication Propounded: Be the number to be multiplied 32© 5® 7©,
and the multiplicator 89© 4® 6©.

The Explication Required: To find the product.

Construction. The given numbers are to be © ® ©
placed as here is shown, multiplying according to 3 2 5 7

the vulgar manner of multiplcation by whole 8 9 4 6
numbers, in this manner, giving the product I 9 5 4 2

29137122. Now to know how much they value, 1 3 0 2 8

join the two last signs together as the one © and 2 9 3 1 3

the other© also, which together make ®, and say 2 6 0 5 6

that the last sign of the product shall be ® ,
which 2 9 I 3 7 I 2 2

being known, all the rest are also known by their © ® © ® ®
continued order. So that the product required is

2913© 7® 1© 2® 2®.
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Demonstration. The number given to be multiplied, 32©5® 7© (as appears by
the third definition of thisDime)

, 32-&, together32^% ;
and by the same reason

the multiplicator 89©4® 6© value 89t
4
0
8
j by the same, the said32^ multiplied

gives the product 2913IV<8?b
-. But it also values 2913© 7® 1© 2© 2®.

It is then the true product, which we were to demonstrate. But to show why©
multiplied by© gives the product@, which is the sum of their numbers, alsowhy®
by © produces @, and why © by © produces ©, etc., let us take fV and
which (by the third definition of this Dime) are 2® 3®, their product is -

10
6
00 .

which value by the said third definition 6©; multiplying then®by©, theproduct
is ©, namely a sign compounded of the sum of the numbers of the signs given.

Conclusion. A dime number to multiply and to be multiplied being given, we
have found the product, as we ought.

Note: If the latter sign of the number to be multiplied be @ © ©
unequal to the latter sign of the multiplicator, as, for 3 7 8
example, the one 3® 7© 8©, the other 5® 4©, they shall 5 4 ©
be handled as aforesaid, and the disposition thereof shall be 1 5 1

2~

thus.
1

2 0 4 1 2

® © © © ©

344332

93006

© ® © ©
(3 5 8 7

THE FOURTH PROPOSITION: OF DIVISION

A dime number for the dividend and divisor being given: to find the quotient.

Explication Proposed: Let the number for the dividend be 3© 4® 4© 3© 5®
2© and the divisor 9® 6©.

Explication Required: To find their quotient.

Construction. The numbers given divided (omitting I

the signs) according to the vulgar manner of dividing 18
of whole numbers, gives the quotient 3587; now to 5104
know what they value, the latter sign of the divisor ©
must be subtracted from the latter sign ofthe dividend,
which is ©, rests © for the latter are also manifest by
their continued order, thus 3© 5® 8© 7© are the 999
quotient required.

Demonstration. The number dividend given 3© 4® 4© 3® 5® 2© makes
(by the third definition of this Dime) 3, A, rh, tAo, Toho, ToAoo, together
^tttoo o o ^

and by the same reason the divisor 9® 6(2) values 0̂-, by which
3-iWo-o

2
o being divided, gives the quotient 3 1%S

0
7

(J ;
but the said quotient values

3© 5® 8© 7®, therefore it is the true quotient to be demonstrated.
Conclusion. A dime number being given for the dividend and divisor, we have

found the quotient required.

Note: If the divisor’s signs be higher than the signs of the dividend, there may be
as many such ciphers 0joined to the dividend as

you will, or as many as shall be necessary: 3 %
as for example, 7© are to be divided by 4©, I 7 0
place after the 7 certain ©, thus 7000, dividing 4 4
them as afore said, and in this sort it gives for
the quotient 1750©.

0 0 (1 7 5 0 ©
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It happens also sometimes that the quotient cannot be expressed by whole
numbers, as 4® divided by 3© in

this sort, whereby appears that there l l 1 (1 (0) ® ©
will infinitely come 3’s, and in such a 4000000(1333
case you may come so near as the 3 3 3 3

thing requires, omitting the remain-

der. It is true, that 13© 3® 3J©, or 13© 3® 3© 3£® etc. shall be the perfect

quotient required. But our invention in this Dime is to work all by whole num-
bers. For seeing that in any affairs men reckon not of the thousandth part of a
mite, es, grain, etc., as the like is also used of the principal geometers and
astronomers in computations of great consequence, as Ptolemy and Johannes
Montaregio, 3 have not described their tables of arcs, chords, or sines in extreme
perfection (as possibly they might have done by multinomial numbers), because
that imperfection (considering the scope and end of those tables) is more con-

venient than such perfection.

Note 2. The extraction of all kinds of roots may also be made by these dime
numbers; as, for example, to extract the square root of 5© 2® 9(g), which is

performed in the vulgar manner of extraction in this sort, and the

root shall be 2® 3©, for the moiety or half of the latter sign of the I

numbers given is always the latter sign of the root; wherefore, if $20
the latter sign given were of a number impair, the sign of the next ~2 3
following shall be added, and then it shall be a number pair; and
then extract the root as before. Likewise in the extraction of the 4
cubic root, the third part of the latter sign given shall be always the sign of the
root; and so of all other kinds of roots.

THE END OF THE DIME

After this follows an Appendix in which different applications of the decimal method of
counting to surveying, cloth measuring, wine gauging, and other trades and professions are
described. The decimal division of weights and measures was not systematically introduced
until the French Revolution. As to its introduction (and nonintroduction) into the United
States, see C. D. Heilman, “Jefferson’s efforts towards the decimalization of U.S. weights
and measures,” Isis 16 (1931), 266-314.

4 NAPIER. LOGARITHMS

John Napier (or Neper, 1550-1617), a Scottish baron, computed a table of what he called

logarithms, using the correspondence between an arithmetic and a geometric progression.

He published his invention first in the Mirifici logarithmorum canonis descriptio (Edinburgh,

3 Johannes Montaregio (1436—1476) is best known under his latinized name, Johannes
Regiomontanus. This craftsman, humanist, astronomer, and mathematician of Nuremberg
influenced the development of trigonometry by means of his widely used book Dr triangulis
omnimodis (written c. 1464, printed in Nuremberg in 1533). The sines, for Regiomontanus
as well as for Stevin, were half chords; see our note to the following text on Napier and
Selection III.2.
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1614), followed by the Mirifici logarithmorum canonis constructio (published posthumously
at Edinburgh in 1619). Of the second work we give an extract here, from the translation by
W. R. Macdonald, The construction of the wonderful canon of logarithms (Blackwood, Edin-
burgh, London, 1889). Napier’s logarithms were not yet those we use at present; for instance,
his logarithm of 107

is zero. The first table based on the decimal system such that log 1=0,
log 10 = 1 was published by Napier’s admirer, the London professor Henry Briggs (1561—
1630), in his Arithmetic logarithmic (London, 1624). With the work of Stevin, Napier, and
Briggs the application of the decimal system to computation was in principle completed. The
relation between exponentials and logarithms and the systematic use of natural logarithms
had to wait until later. See our text on this subject by Euler.
The idea of the logarithms also occurred to Napier’s contemporary, the Swiss instrument

maker Jost Biirgi (1552-1632), whose Progress Tabulen (Prague, 1620) contain a certain
type of antilogarithms.

Curiously enough, though the word “logarithm” occurs in the title of the Construction,
the text uses numerus artificialis instead, which we translate by logarithm.
The Constructio has an appendix on spherical trigonometry, where Napier uses the rules

known as rules of Napier on spherical triangles (expressed in words).
The Descriptio opens with the following verse:

Hie liber est minimus, si spectes verba, sed usum
Si spectes, Lector, maximus hie liber est

Disce, scies parvo tantum debere libello

Te, quantum magnis mille voluminibus,

which we freely translate as follows:

The use of this book is quite large, my dear friend,

No matter how modest it looks,

You study it carefully and find that it gives

As much as a thousand big books.

The author signs his name as Andres Junius, Phil. prof, in Acad. Edinb. On Napier and
his logarithms, see Napier tercentenary memorial volume, ed. C. G. Knott (Royal Society of
Edinburgh, London, 1915), and J. F. Scott, A history of mathematics (Taylor and Francis,
London, 1958), chap. IX.

Here follows part of the Construction of the wonderful canon of logarithms.

1. A logarithmic table [tabula artificialis
] is a small table by the use of which

we can obtain a knowledge of all geometrical dimensions and motions in space,
by a very easy calculation ... It is picked out from numbers progressing in
continuous proportion.

2. Of continuous progressions, an arithmetical is one which proceeds by equal
intervals, a geometrical, one which advances by unequal and proportionally
increasing or decreasing intervals . . .

3. In these progressions we require accuracy and ease in working. Accuracy
is obtained by taking large numbers for a basis; but large numbers are most
easily made from small by adding cyphers.

1

1 Cyphers = zeros (see Selection 1.1, Leonardo of Pisa).
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Thus instead of 1000000, which the less experienced make the greatest

sine, 2 the more learned put 10000000, whereby the difference of all sines is

better expressed. Wherefore also we use the same for radius and for the

greatest of our geometrical proportionals.

4. In computing tables, these large numbers may again be made still larger

by placing a period after the number and adding cyphers . .

.

5. In numbers distinguished thus by a period in their midst, whatever is

written after the period is a fraction [quicquid post periodam notatur fradio], the

denominator of which is unity with as many cyphers after it as there are figures

after the period. 3

Thus 10000000.04 is the same as lOOOOOOOyro
;
also 25.803 is the same as

25-i
4
0
-
0-o; also 9999998.0005021 is the same as 9999998— jingo 00-, and so of

others.

6. When the tables are computed, the fractions following the period may then
be rejected without any sensible error. For in our large numbers, an error which
does not exceed unity is insensible and as if it were none. .

.

Then follow in Arts. 7-15 some rules for accurate counting with large numbers.

16. Hence, if from the radius with seven cyphers added you subtract its

10000000th part, and from the number thence arising its 10000000th part, and
so on, a hundred numbers may very easily be continued geometrically in the

proportion subsisting between the radius and the sine less than it by unity,

namely between 10000000 and 9999999; and this series of proportionals we
name the First table.

Sin 90 = 100.0000, hence the radius R of the circle is 106
. The sine of an angle was

always defined as half the chord belonging to the double angle, hence sin a = CB =
£ chord 2a = \CD [Fig. 4]. The numerical values of the sines therefore depended on the choice
of R. Euler introduced dimensionless sines and tangents by consistently writing R = 1

(1748, see our extract of the Introduction Selection V.15).

3 The clumsy notation for decimal fractions of Stevin is here replaced by the method of
the decimal point. Napier’s authority made this method generally accepted.
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First table.

10000000.0000000

1.0000000

9999999.0000000

.9999999

9999998.0000001

.9999998

9999997.0000003
to be continued up to

9999900.0004950

Thus from radius, with seven cyphers added for

greater accuracy, namely, 10000000.0000000, subtract

1.0000000 you get 9999999.0000000; from this subtract

.9999999, you get 9999998.0000001; and proceed in this

way. . .until you create a hundred proportionals, the last

of which, if you have computed rightly, will be

9999900.0004950.

17. The Second table proceeds from radius with six cyphers added, through
fifty other numbers decreasing proportionally in the proportion which is easiest,

and as near as possible to that subsisting between the first and last numbers
of the First table.

Second table.

10000000.000000

100.000000

9999900.000000

99.999000

9999800.001000

to be continued up to

9995001.222927

Thus the first and last numbers of the First table are

10000000.0000000 and 9999900.0004950, in which pro-

portion it is difficult to form fifty proportional numbers.
A near and at the same time an easy proposition is

100000 to 99999, which may be continued with sufficient

exactness by adding six cyphers to radius and continually

subtracting from each number its own 100000th part . . .

and this table contains, besides radius which is the first,

fifty other proportional numbers, the last of which, if you
have not erred, you will find to be 9995001.222927. 4

Article 18 has a Third table of 69 columns, from 10 12 down by 2000th parts to

9900473.57808.

19. The first numbers of all the columns must proceed from radius with four

cyphers added, in the proportion easiest and nearest to that subsisting between
the first and the last numbers of the first column.

As the first and the last numbers of the first column are 10000000.0000 and
9900473.5780, the easiest proportion very near to this is 100 to 99. Accord-
ingly sixty-eight numbers are to be continued from radius in the ratio of 100
to 99 by subtracting from each one of them its hundredth part.

20. In the same proportion a progression is to be made from the second
number of the first column through the second numbers in all the columns, and
from the third through the third, and from the fourth through the fourth, and
from the others respectively through the others.

4 This should be 9995001.224804.
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Thus from any number in one column, by subtracting its hundredth part,

the number of the same rank in the following column is made, and the

numbers should be placed in order as follows.

Here follows a table of “Proportionals of the Third Table,” with 69 columns, the last

number in the sixty-ninth column being 4998609.4034, roughly half the original number

10000000 .0000 .

21. Thus, in the Third table, between radius and half radius, you have sixty-

eight numbers interpolated, in the proportion of 100 to 99, and between each

two of these you have twenty numbers interpolated in the proportion of 10000

to 9995; and again, in the Second table, between the first two of these namely

between 10000000 and 9995000, you have fifty numbers interpolated in the pro-

portion of 100000 to 99999; and finally, in the First table, between the latter, you

have a hundred numbers interpolated in the proportion of radius or 10000000

to 9999999; and since the difference of these is never more than unity, there is

no need to divide it more minutely by interpolating means, whence these three

tables, after they have been completed, will suffice for computing a Logarithmic

table.

Hitherto we have explained how we may most easily place in tables sines or

natural numbers progressing in geometrical proportion.

22. It remains, in the Third table at least, to place beside the sines or natural

numbers decreasing geometrically their logarithms or artificial numbers in-

creasing arithmetically.

Articles 23 and 24 represent arithmetic increase and geometric decrease by points on a line.

25. Whence a geometrically moving point approaching a fixed one has its

velocities proportionate to its distances from the fixed one.

Thus referring to the preceding figure [Fig. 1], I say that when the geo-

metrically moving point G is at T, its velocity is as the distance TS, and when

I 2 3 4 56
Fig. 1 i 1

i i i n i

T G G G S

G is at 1 its velocity is as 1<S', and when at 2 its velocity is as 2S, and so of the

others. Hence, whatever be the proportion of the distances TS, IS, 2S, 3S, 4S,

etc., to each other, that of the velocities of G at the points T

,

1, 2, 3, 4, etc.,

to one another, will be the same.
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For we observe that a moving point is declared more or less swift, according
as it is seen to be borne over a greater or less space in equal times. Hence the
ratio of the spaces traversed is necessarily the same as that of the velocities.
But the ratio of the spaces traversed in equal times, T\, 12, 23. 34, 45, etc.,

is that of the distances TS, IS, 2S, 3S, 4S, etc. Hence it follows that the ratio
to one another of the distances of 0 from S, namely TS, IS, 2,S', 3S, 4S, etc.,

is the same as that of the velocities of G at the points T

,

1, 2, 3, 4, etc
respectively.

26.

The logarithm of a given sine is that number which has increased arith-
metically with the same velocity throughout as that with which radius began to
decrease geometrically, and in the same time as radius has decreased to the
given sine.

Let the line TS [Fig. 2] be the radius, and dS a given sine in the same line;

let g move geometrically from T to d in certain determinate moments of time!
Again, let hi be another line, infinite towards i, along which, from b, let a move
arithmetically with the same velocity as g had at first when at T; and from
the fixed point b in the direction of i let a advance in just the same moments
of time up to the point c. The number measuring the line be is called the
logarithm of the given sine dS.

5

Fig. 2

27. Whence nothing is the logarithm of radius [Unde sinus totius nihil est pro
artificiali] . . .

28. Whence also it follows that the logarithm of any given sine is greater than
the difference between radius and the given sine, and less than the difference
between radius and the quantity which exceeds it in the ratio of radius to the
given sine. And these differences are therefore called the limits of the logarithm.

Thus, the preceding figure being repeated [Fig. 3], and ST being produced
beyond T to o, so that oS is to TS as TS to dS, I say that be, the logarithm of
the sine dS, is greater than Td and less than oT. For in the same time that g
is borne from o to T, g is borne from T to d, because (by 24) oT is such a part
of oS as Td is of TS, and in the same time (by the definition of a logarithm)
is a borne from b to c; so that oT, Td, and be are distances traversed in equal
times. But since g when moving between T and o is swifter than at T, and

5 In the language of the calculus: let TS = a (= 107
), dS = y; then the initial velocity

(t — c) at g is a (see Art. 25), hence the velocity of g at d is (d/dt)(a — y) = — dy/dt = yhence y = ae~‘. When be = x, then x = at = Nap log y. Hence Nap log y = a In ajy, so
that (by Art. 27) for y = a. Nap log a = 0, where In = loge ,

the natural logarithm. The
familiar rules for logarithmic computation do not apply:

Nap log xy = a(ln a — In x - In y ).

We should not be confused by the terms “radius” and “sine”; what is meant is a line
segment TS and a section dS £ TS. When a = 1 the Nap log and the In differ only in sign;
this may have caused the confusion in some textbooks, which insist on calling the natural
logarithms Napierian or Neperian logarithms.



NAPIER. LOGARITHMS 4
|

17

between T and d slower, but at T is equally swift with a (by 26); it follows

that oT the distance traversed by g moving swiftly is greater, and Td the

distance traversed by g moving slowly is less, than be the distance traversed

by the point a with its medium motion, in just the same moments of time;

the latter is, consequently, a certain mean between the two former. Therefore

oT is called the greater limit, and Td the less limit of the logarithm which be

represents.

O

Fig. 3 9

T

9

b

d

!

9

c

I

s

29. Therefore to find the limits of the logarithm of a given sine.

By the preceding it is proved that the given sine being subtracted from

radius the less limit remains, and that radius being multiplied into the less

limit and the product divided by the given sine, the greater limit is

produced, as in the following example.

30. Whence the first proportional of the First table, which is 9999999, has its

logarithm between the limits 1.0000001 and 1.0000000. . .

31. The limits themselves differing insensibly, they or anything between

them may be taken as the true logarithm . . .

32. There being any number of sines decreasing from radius in geometrical

proportion, of one of which the logarithm or its limits is given, to find those of

the others.

This necessarily follows from the definitions of arithmetical increase, of

geometrical decrease, and of a logarithm ... So that, if the first logarithm

corresponding to the first sine after radius be given, the second logarithm will

be double of it, the third triple, and so of the others; until the logarithms of

all the sines be known . . .

33. Hence the logarithms of all the proportional sines of the First table

may be included between near limits, and consequently given with sufficient

exactness . .

.

34. The difference of the logarithms of radius and a given sine is the logarithm

of the given sine itself . . .

35. The difference of the logarithms of two sines must be added to the

logarithm of the greater that you may have the logarithm of the less, and sub-

tracted from the logarithm of the less that you may have the logarithm of the

greater . . .

36. The logarithms of similarly proportioned sines are equidifferent.

This necessarily follows from the definitions of a logarithm and of the two

motions . . . Also there is the same ratio of equality between the differences of

the respective limits of the logarithms, namely as the differences of the less

among themselves, so also of the greater among themselves, of which

logarithms the sines are similarly proportioned.

37. Of three sines continued in geometrical proportion, as the square of the

mean equals the product of the extremes, so of their logarithms the double of
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the mean equals the sum of the extremes. Whence any two of these logarithms
being given, the third becomes known . . .

38. Of four geometrical proportionals, as the product of the means is equal to
the product of the extremes; so of their logarithms, the sum of the means is equal
to the sum of the extremes. Whence any three of these logarithms being given,
the fourth becomes known ... 6

39. The difference of the logarithms of two sines lies between two limits; the
greater limit being to the radius as the difference of the sines to the less sine, and
the less limit being to radius as the difference of the sines to the greater sine ... 7

Articles 40-46 show how to find logarithms.

47.

In the Third table, beside the natural numbers, are to be written their
logarithms; so that the Third table, which after this we shall always call the
Radical table, may be made complete and perfect . .

.

The Radical Table

First Column Second Column 69th Column

Natural
Numbers

10000000.0000
9995000.0000
9990002.50000

Logarithms
.0

5001.2
10002.5

Natural
Numbers

9900000.0000
9895050.0000
9890102.4750

Logarithms
100503.3
105504.6
110505.8

Natural
Numbers

5048858.8900
. . 5046334.4605

5043011.2932

Logarithms
6834225.8
6839227.1
6844228.3

9900473.5700 100025.0 9801468.8423 200528.2 4998609.4034 6934250.8

48. The Radical table being now completed, we take the numbers for the
logarithmic table from it alone.

For as the first two tables were of service in the formation of the third, so
this third Radical table serves for the construction of the principal Logarith-
mic table, with great ease and no sensible error.

49. To find most easily the logarithms of sines greater than 9996700.
This is done simply by the subtraction of the given sine from radius. For

(by 29) the logarithm of the sine 9996700 lies between the limits 3300 and
3301

;
and these limits, since they differ from each other by unity only, cannot

6 The modem theorem for the logarithm of a product does not hold, since the logarithm
of unity is not zero. Hence Arts. 37 and 38, to express special cases.

7 This is proved by the principle of proportion and of Article 36. This rule is used first in
Arts. 40 and 41 as an illustration to find the logarithm of 9999975.5 from that of the nearest
sine in the First table, 9999975.0000300, noting that the limits of the logarithms of the
latter number are 25.0000025 and 25.000000, that the difference of the logarithms of the
two numbers by the rule just given is .4999712, and that the limits for the logarithm of
9999975.5 are therefore 24.5000313 and 24.5000288, whence Napier lists the logarithm as
24.5000300.

Articles 41 to 45 illustrate the fact that one may now calculate the logarithms of all the
proportionals” in the First, Second, and Third tables, as well as of the sines or natural

numbers not proportionals in these tables but near or between them.
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differ from their true logarithm by any sensible error, that is to say, by an

error greater than unity. Whence 3300, the less limit, which we obtain simply

by subtraction, may be taken for the true logarithm. The method is necessarily

the same for all sines greater than this.

50.

To find the logarithms of all sines embraced within the limits of the

Radical table.

Multiply the difference of the given sine and table sine nearest it by radius.

Divide the product by the easiest divisor, which may be either the given sine

or the table sine nearest it, or a sine between both, however placed. By 39

there will be produced either the greater or less limit of the difference of the

logarithms, or else something intermediate, no one of which will differ by a

sensible error from the true difference of the logarithms on account of the

nearness of the numbers in the table. Wherefore (by 35), add the result, what-

ever it may be, to the logarithm of the table sine, if the given sine be less than

the table sine; if not, subtract the result from the logarithm of the table sine,

and there will be produced the required logarithm of the given sine.

Two examples are given. In the first the given sine is 7489557, the table sine ofwhich

nearest to it is 7490786.6119. The computation gives 2890752 for the logarithm.

51. All sines in the proportion of two to one have 6931469.22 for the dif-

ference of their logarithms [because this number is the logarithm of sine

5000000],

52. All sines in the proportion of ten to one have 23025842.34 for the dif-

ference of their logarithms.

Article 53 contains a short table of given proportions of sines and corresponding dif-

ferences of logarithms; Art. 54 deals with the logarithms of all sines outside the limits of the

Radical table.

55. As half radius is to the sine of half a given arc, so is the sine of the com-

plement of the half arc to the sine of the whole arc ... 8

56. Double the logarithm of an arc of 45 degrees is the logarithm of half

radius . .

.

8 Only her© does Napier begin to introduce angles into the construction of his tables.

Napier proves Arts. 55-57 by geometric principles and the preceding theorems concerning

logarithms. He then often speaks of the logarithms of the arcs, meaning logarithms of the

corresponding sines.
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57 . The sum of the logarithms of half radius and any given arc is equal to the
sum of the logarithms of half the arc and the complement of the half arc. Whence
the logarithm of the half arc may be found if the logarithms of the other three

be given . . .

Article 58 deals with the logarithms of all arcs not less than 45 degrees.

59. To form a logarithmic table.

Here follows a description of the construction of a table of 45 pages, each page devoted
to one degree divided into minutes.

Napier’s table is constructed in quite the same form as that used at present, except that
the second (sixth) column gives sines for the number of degrees indicated at the top (bot-

tom) and of minutes in the first (seventh) column, the third (fifth) column gives the cor-

responding logarithm, and the fourth column gives the differentiae between the logarithms
in the third and fifth columns, these being therefore essentially logarithmic tangents or
cotangents. A few entries follow.

0° min sines logarithm
+ /

—
differentiae logarithm sines

0 0 infinitum infinitum 0 10000000 69
1 2909 81425681 81425680 1 10000000 59
2 5818 74494213 74494211 2 9999998 58
3 8727 70439560 70439560 4 9999998 57

30° min sines logarithm
+ /

—
differentiae logarithm sines

0 5000000 6931469 5493059 1483410 8660254 60
1 5002519 6926432 5486342 1440090 8658799 59
2 5005038 6921399 5479628 1441771 8657344 58

44° min

59 7069011 3468645 5818 3462827 7071068 1

60 7071068 3465735 0 3465735 7071068 0

min 45
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Hence log sin 3' = log 8727 = 70439560,

log sin 30° T = log 5002519 = 6926432,

log sin 45° = log 7071068 = 3465735; (half of log sin 30°, Art. 56),

also log sin 90° = log 10000000 = 0.

5 PASCAL. THE PASCAL TRIANGLE

The so-called Pascal triangle appears in a treatise by Blaise Pascal (1623-1662), published

posthumously under the title Traite du triangle arithmetique, avec quelques autres petits

traites sur la meme maniere (Paris, 1665). This treatise is important not only because of its

careful examination of the properties of the binomial coefficients, but also because of their

application to problems in games of chance. At one place Pascal expresses with clarity the

principle of complete induction.

The Pascal triangle appears for the first time (so far as we know at present) in a book of

1261 written by Yang Hui, one of the mathematicians of the Sung dynasty in China. 1 The
properties of binomial coefficients were discussed by the Persian mathematician Jamshid
Al-KashI in his Key to arithmetic of c. 1425. 2 Both in China and in Persia the knowledge of

these properties may be much older. This knowledge was shared by some of the Renaissance

mathematicians, and we see Pascal’s triangle on the title page of Peter Apian’s German
arithmetic of 1527. After this we find the triangle and the properties of binomial coefficients

in several other authors. 3

Pascal wrote his treatise probably by the end of 1654. It can be found in the Oeuvres,

ed. L. Brunschvicg and P. Boutroux, III (Hachette, Paris, 1909), 456 seq., and in other

editions of Pascal’s work. A paraphrase of certain theorems can be found in H. Meschkowski,
Ways of thought of great mathematicians (Holden-Day, San Francisco, 1964), 36-43.

TREATISE ON THE ARITHMETIC TRIANGLE

I designate as the arithmetic triangle a figure of which the construction is as

follows [Fig. 1], Through an arbitrary point G I draw 2 lines perpendicular to

each other, GV and on each of which I take as many equal and continuous

parts as I like, beginning at G, which I call 1, 2, 3, 4, etc., and these numbers are

the indices
[
exposans

]
of the divisions of the lines.

Then I join the points of the first division, which are on each of the two lines,

by another line that forms a triangle of which this line is the base.

I also join the two points of the second division by another line that forms a

second triangle of which this line is the base.

1 J . Needham, Science and civilisation in China, III (Cambridge University Press, New
York, 1959), 135.

2 Russian translation by B. A. Rozenfel’d (Gos. Izdat, Moscow, 1956); see also Selection
1.3, footnote 1.

3 Smith, History of mathematics, II, 508-512. See also our Selection II.9 (Girard).
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Fig. 1

And joining in this way all the division points which have the same indices I
form with them as many triangles and bases.

I draw through every one of the division points lines parallel to the sides, and
these by their intersections form small squares which I call cells [cellules].

And the cells that are between two parallels that run from left to right are
called cells of the same parallel rank, such as the cells G, a, n, etc., or <p, f. 6 . etc.
And those that are between two lines that run from the top downward are called

cells of the same perpendicular rank, such as the cells G, <p, A, D, etc. and these:
cr, i/j, B, etc.

And those that the same base traverses diagonally are called cells of the same
base, such as the following: D, B, d, A, and these: A

, if,, n.

The cells of the same base that are equally distant from their extremities are
called reciprocal, such as these: E, R and B, 6, because the index of the parallel
rank of the one is the same as the index of the perpendicular rank of the other,
as appears in the example, where E is in the second perpendicular and in the
fourth parallel rank, and R is in the second parallel and in the fourth per-
pendicular rank, reciprocally. It is easy enough to show that those which have
their indices reciprocally equal are in the same base and equally distant from its

extremities.

It is also quite easy to demonstrate that the index of the perpendicular rank
of any cell whatsoever, added to the index of its parallel rank, exceeds the index
of its base by unity.

For example, the cell F is in the third perpendicular rank and in the fourth
parallel one, and in the sixth base, and its two indices of the ranks 3 + 4 exceed
the index 6 of the base by unity, which results from the fact that the two sides
of the triangle are divided into an equal number of parts, but that is rather
understood than demonstrated.
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The following remark is of the same nature: that every base contains one cell

more than the preceding one, and every one contains as many cells as its index

has units; the second base rpc, for instance, has two cells, the third Aifin has three

of them, etc.

We now place numbers in each cell and this is done in the following way: the

number of the first cell which is in the right angle is arbitrary, but once it has

been placed all the other numbers are determined, and for this reason it is called

the generator of the triangle. And every one of the other numbers is specified by
this sole rule:

The number of each cell is equal to that of the cell preceding it in its per-

pendicular rank plus that of the cell which precedes it in its parallel rank. For
instance, the cell F, that is, the number of the cell F, is equal to cell C plus cell

E, and so the others.

From this many consequences can be drawn. Here are the most important

ones, where I consider the triangles whose generator is unity, but what can be

said about them will also apply to the others.

FIRST CONSEQUENCE

In every arithmetic triangle all the cells of the first parallel rank and of the first

perpendicular rank are equal to the generator.

Indeed, by the construction of the triangle, every cell is equal to the cell which
precedes it in its perpendicular rank plus the cell that precedes it in its parallel

rank. Now, the cells of the first parallel rank have no cells which precede them
in their perpendicular ranks, nor have those of the first perpendicular rank any
in their parallel ranks: hence they are all equal to each other and to the

generating first number.

And so <p is equal to G + zero, that is, <p is equal to G.

And so A is equal to <p + zero, that is, <p.

And so a is equal to G + zero, and n equal to a + zero.

And so the others.

Using a more modern notation, in which we call Pf the cell of parallel rank l and vertical

rank k, so that

(k + l- 2)!
1

(k - 1)!(Z - 1)!

we can write the next “consequences” as follows:

k

2 .

i = i

k

i= 1

3.
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k- 1 1-1

P\ ~ 1 = P'j\ e.g., ^ 5r = ^+ ^ + ^' + 93 + A + 7r + CT + (?,

i = 1 *=1

where gr = 1, the generator;

5- Pf = P l

k \ e.g., <p = o = G,n = A = G, D = \ = G.

6- All Pf = Pl

k ,
k fixed; e.g., mj>BEM(p is equal to cpi/idRSN

;

7- ^ Pf =
2 ^ Pj> k + l = fixed number = a, i + j = a — l;

l,k= i,/=l,...,n-l

e.g., -Z) + A + -B-|-0 = 2^4 + 2i/j -f- 27r;

8
. 2 P

‘
= 2n ~ 2

’
k + l = n;

l,k= 1 n

9. 1 + 2 + • • • + 2n = 2n + 1 - 1;

p p-i

10. V Pf = 2 V P- + p;_ x [e.g., PI + P§ + PI = 2(PJ + PI) + PI],
I = n i = n - 1

k + l = n, i + j = n -
1, p = n - 2; e.g., P + P + d = 2A + 2<p + tt;

11. PI = 2P'- 1 = 2P{_ i: e.g., C = 8 + B = 2B.

TWELFTH CONSEQUENCE

In every arithmetic triangle, if two cells are contiguous in the same base, the

upper is to the lower as the number of cells from the upper to the top of the base
is to the number of those from the lower to the bottom, inclusive.

Let the two contiguous cells, arbitrarily chosen on the same base, be E, C;

then I say that

E is to C as 2 is to 3

lower upper because there are
r ^ 1 >

because there are

one one two cells between three cells between
E and the first, C and the top,

namely E, H\ namely C, R, p.

Although this proposition has an infinite number of cases I shall give for it

a very short demonstration by supposing two lemmas:

The first one, evident in itself, is that this proportion occurs in the second

base; because it is clear enough that cp is to a as 1 is to 1

.

The second one is that if this proposition is true in an arbitrary base, it will

necessarily be true in the next base. From which it is clear that it will necessarily

be true in all bases, because it is true in the second base because of the first
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lemma; hence by means of the second lemma it is true in the third base, hence in

the fourth base, and so on to infinity. 4

It is therefore necessary to demonstrate only the second lemma, and this can

be done in the following way. Let this proportion be true in an arbitrary base,

as in the fourth one D, that is, if D is to B as 1 is to 3, and B to 6 as 2 to 2, and

6 to A as 3 to 1, etc., then I say that the same proportion will be true in the next

base, ///£, and that, for example, E is to 0 as 2 is to 3.

Indeed, D is to B as 1 is to 3, by hypothesis.

Hence D + B is to B as 1 + 3 is to 3.

E is to B as 4 is to 3.

In the same way; B is to 6 as 2 is to 2, by hypothesis.

Hence B + d is to B as 2 + 2 is to 2.

C is to B as 4 is to 2.

But B is to E as 3 is to 4.

Hence, by the double proportion, 5 C is to E as 3 is to 2. Q.E.D.

The proof can be given in the same way in all the other cases, since this proof

is founded only on the fact that this proportion is true in the preceding base, and
that every cell is equal to its preceding one plus the one above it, which is true

in all cases. 6

There follow more “consequences,” numbered 13-19. 7 The article ends with a “Problem

Given the indices of the perpendicular and of the parallel rank of a cell, to find

the number of the cell, without using the arithmetic triangle.

4 This seems to be the first satisfactory statement of the principle of complete induction.

See H. Freudenthal, “Zur Gesehichte der vollstandigen Induktion,” Archives Internationales

des Sciences 22 (1953), 17-37.
5 The text has “proportion troublee,” probably a misprint for “proportion doublee.”
6 The meaning of this is as follows. Given

But

hence

hence

n--p‘k
+
-\ j- (in base k + l — 1).

n + nvi Pk
+
-\ (rule of formation of the triangle);

n+i =n+
-\

P‘kt\:P‘kt

l + k — 1

k - 1
’

l + 1

k - 2’

pi + 2 . pi + 1 _
-Cfc-l’-TlC-l —

pi + 1 . PI + 2 _ P ^

l + k — 1

l+l ’

(in base k + l).

7 For example, consequence 17 states that

k I

= k:l’ e-g" + 0 + v):(B + A) = 3:2.

1 = 1 1 = 1

These consequences can all be found in the translation of Pascal’s paper in Smith, Source
book

, pp. 74-75.
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For example, let it be proposed to find the number of the cell f of the fifth

perpendicular rank and of the third parallel rank.

Having taken all the numbers that precede the index of the perpendicular

rank 5, that is, 1, 2, 3, 4, take as many natural numbers beginning with the index
of the parallel rank 3, that is, 3, 4, 5, 6.

Now multiply the first numbers into each other, and let the product be 24.

Multiply the other numbers into each other, and let the product be 360, which
divided by the other product 24, gives 15 as the quotient. This quotient is the
desired number.

Indeed, f is to the first number of its base V in composed ratio of all the ratios

of the cells among themselves, that is,

I is to V in composed ratio of £ to p + p to K + K to Q + Q to V,

3 to 4 4 to 3 5~toV 6~toT,
or by the twelfth consequence:

£ is to V as 3 into 4 into 4 into 5 into 6 into 4 into 3 into 2 into 1,

But V is unity; hence | is the quotient of the division of the product of 3 into 4
into 5 into 6 by the product of 4 into 3 into 2 into l.

8

Note. If the generator were not unity we should have to multiply the quotient
by the generator.

This paper is followed by several others, in which the Pascal triangle is applied. 9 First it is

used to sum the arithmetical sequences of different orders 1, 2, 3, 4, etc.; 1, 3, 6, 10, etc.,

1, 4, 10, 20, ... (these sequences are called “numbers of the first, second, etc. order”
[ordres numeriques ], then to the solution of certain games of chance, to the finding of com-
binations, to the raising of binomials to different powers, to the summation of the squares,
cubes, etc., of the terms of an arithmetical series, etc., and to the proof that (in our present

r a ap+i
notation)

J
xp dx =

» p a positive integer. On this integral see Selection IV.6.

6 FERMAT. TWO FERMAT THEOREMS AND FERMAT NUMBERS

Pierre de Fermat (1601—1665) was a lawyer attached as councilor to the provincial parlia-
ment (that is, law court) of Toulouse. Of his contributions to geometry and calculus we
speak in Selections III.3 and IV.7, 8. He was the first to take up seriously the challenge
offered in number theory by the Arithmetica of Diophantus, first made fully available in the
original Greek of a.d. c. 250 by Claude Bachet in 1621, together with a Latin translation.
Fermat communicated his results in letters to his friends or kept them to himself in notes,

8 This means that P'k =
'
{ ' ±-^h—^L±A ~ 2) = CP_V 2

; hence Cj = + where

Tfl\

~
^\ (n — py

’ numher of combinations of n elements in groups of p.

9 Some of this is translated in Smith, Source book, pp. 76-79.
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many of them as marginal notes to his copy of Bachet. His son Samuel published a second

edition of Bachet’s Diophantus and added to it his father’s marginal notes (Toulouse, 1670).

The extant work of Fermat has been published in the Oeuvres de Fermat (4 vols.
;
Gauthier -

Villars, Paris, 1891-1912), in which the Latin texts are accompanied by a French trans-

lation (in vol. Ill, 1896).

We first quote the famous Latin marginal note to Diophantus’ Proposition II, 8: “To
divide a given square number into two squares,” for which Diophantus gives the answer

(in our notation) [a(m2 + l)]
2 = (2am)2 + \a(m 2 - l)]

2
;

for example, a = m = \\

16 = (

A
6-)

2 + Oi )

2
;
see Oeuvres, I, 53; French translation, III, 24. Fermat wrote:

In contrast, it is impossible to divide a cube into two cubes, or a fourth

power into two fourth powers, or in general any power beyond the square into

powers of the same degree; of this I have discovered a very wonderful demon-
stration

[
demonstrationem mirabilem sane detexi ]. This margin is too narrow to

contain it.

It is well known that nobody has ever found this demonstratio sane mirabilis, but also that

nobody has been able to discover a positive integer n > 2 for which xn + y
n = z

n can be

solved in terms of positive integers x, y, z. On the enormous literature in this field see

P. Bachman, Das Fermatproblem (De Gruyter, Berlin-Leipzig, 1919); L. J. Mordell, Three

lectures on Fermat's last theorem (Cambridge University Press, Cambridge, England, 1921);

R. Nogues, Theoreme de Fermat. Son histoire (Vuibert, Paris, 1932); H. S. Vandiver,
“ Fermat’s last theorem,” American Mathematical Monthly 53 (1946), 555-578. We shall

show (Selection 1.9) how Euler proved Fermat’s theorem for n = 3 and n = 4.

Fermat communicated many of his results to the mathematician Bernard Frenicle de

Bessy (1605-1675). In a letter of October 18, 1640, written in French, we find, among many
observations, the following paragraphs containing another theorem of Fermat, which states

that ap ~ 1
is divisible by p when p is prime and a, p are relatively prime. Fermat had been

interested in Euclid’s theorem (Elements, Prop. IX, 36) that numbers of the form

2n
- 1

(2
n — 1 )

are perfect, that is, equal to the sum of their divisors including 1 (for example,

6 = 1+ 2 + 3, 28=1+2 + 4 + 7 + 14), if 2” — 1 is prime. Such prime numbers
2n — 1 Fermat called the radicals of the perfect numbers, and he had sent to Father Marin

Mersenne some of his conclusions about these radicals in a letter of June 1640. 1 (If n is not

prime, 2" — 1 cannot be prime; if n is prime, 2 n — 2 is divisible by n; if n is prime, 2 n — 1

is divisible only by prime numbers of the form 2kn + 1; for example, 2047 = 2 11 — 1 =
23 x 89, 2 11 — 2 = 2046 = 11 x 186.) Then, in August 1640, in a letter to Frenicle,

Fermat had turned to numbers of the form 2n + 1, writing that he was “almost convinced”

1 These radicals 2n — 1, when prime, are known as Mersenne numbers M n . It is clear that
n in this case must be prime, but this is not sufficient. For example,MX1 = 2047 = 23 x 89.

Father Marin Mersenne (1586—1648), a Minorite (Franciscan), was in constant corre-

spondence with the outstanding mathematicians of his day. His Correspondence has been
published in 8 volumes (ed. C. de Waard; Beauchesne, Edition du Centre National de la

Recherche, Paris, 1932-1963).
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[quasi persuade
] that these numbers are prime when n is a power of 2. We now know that,

though this is true for n = 2, 4, 8, 16, it stops being true for n = 32, which, as Euler

showed
(
Commentarii Academiae Scientiarum Petropolitanae 1 (1732/33, publ. 1738), 20-48,

Opera omnia, ser. I, vol. 2, p. 73) is divisible by 641 (4294967297 = 641 x 6700417). 2 Fer-

mat, on October 10, 1640, after referring to earlier letters, continues:

It seems to me after this that it is important to tell you on what foundation I

construct the demonstrations of all that concerns the geometrical progressions,

which is as follows

:

Every prime number is always a factor [mesure infailliblement] of one of the

powers of any progression minus 1 ,
and the exponent

[
exposant

]
of this power is

a divisor of the prime number minus 1. After one has found the first power that

satisfies the proposition, all those powers of which the exponents are multiples

of the exponent of the first power also satisfy the proposition.

Example: Let the given progression be

1 2 3 4 5 6

3 9 27 81 243 729 etc.

with its exponents written on top.

Now take, for instance, the prime number 13. It is a factor of the third power
minus 1, of which 3 is the exponent and a divisor of 12, which is one less than the

number 13, and because the exponent of 729, which is 6, is a multiple of the

first exponent, which is 3, it follows that 13 is also a factor of this power 729

minus 1.

And this proposition is generally true for all progressions and for all prime

numbers, of which I would send you the proof if I were not afraid to be too long.

But it is true that every prime number is a factor of a power plus 1 in any
kind of progression; for, if the first power minus 1 of which the said prime

number is a factor has for exponent an odd number, then in this case there

exists no power plus 1 in the whole progression of which this prime number is a

factor.

Example: Because in the progression of 2 the number 23 is a factor of the

power minus 1 which has 1 1 for exponent, the said number 23 will not be a factor

of any power plus 1 of the said progression to infinity.

If the first power minus 1 of which the given prime number is a factor has an
even number for exponent, then in this case the power plus 1 which has an
exponent equal to half this first exponent will have the given prime as a factor.

The whole difficulty consists in finding the prime numbers which are not

factors of any power plus 1 in a given progression, for this, for instance, is useful

for finding which of the prime numbers are factors of the radicals of the perfect

numbers, and to find a thousand other things as, for example, why it is that the

37th power minus 1 in the progression of 2 has the factor 223. In one word,

2 These numbers 2n + 1,n = 2‘, when prime, are known as Fermat numbers. See O. Ore,
Number theory and its history (McGraw-Hill, New York, 1948).
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we must determine which are the prime numbers that factor their first power
minus 1 in such a way that the exponent of the said power be an odd number

—

which I think very difficult
[fort malaise].

Fermat then continues with other striking properties of powers, also of numbers of the

form 2n + 1 ,
which, he believed, are all prime if n is a power of 2.

3

7 FERMAT. THE “PELL” EQUATION

In a letter of February 1657 (
Oeuvres

,
II, 333-335; III, 312-313) Fermat challenged all

mathematicians (thinking probably in the first place of John Wallis in England) to find an
infinity of integer solutions of the equation x2 — Ay2 = 1, where A is any nonsquare in-

teger. He may have been led to this by his study of Diophantus, who set the problem of

finding, for example, a number x such that both K)x + 9 and 5x + 4 are squares. If these

squares are called u2 and v2 respectively, then u2 — 2v2 = 1, and a solution is x = 28. The
problem was taken up by De Billy (see below) and later by Euler, who in his “De solutione

problematum Diophanteorum per numeros integros,” Commentarii Academiae Scientiarum

Petropolitanae 6 (1732/33, publ. 1738), 175-188, Opera omnia, ser. I, vol. 2, 6-17, referred to

the problem as that of Pell and Fermat. John Pell (1611-1685), an English mathematician,

had little to do with the problem, but the problem of Fermat has since been known as that

of the Pell equation. It had already been studied by Indian mathematicians, and even in the

Cattle Problem, attributed to Archimedes, which leads to a “Pell” equation with A —
4729494 = 2 -3-7 -11 -29-353; see T. L. Heath, A manual of Greek mathematics (Clarendon

Press, Oxford, 1931), 337.

Fermat, after observing that “Arithmetic has a domain of its own, the theory of integral

numbers,” defines his problem as follows:

Given any number not a square, then there are an infinite number of squares

which, when multiplied by the given number, make a square when unity is

added.

Example.—Given 3, a nonsquare number; this number multiplied by the

square number 1, and 1 being added, produces 4, which is a square.

Moreover, the same 3 multiplied by the square 16, with 1 added makes 49,

which is a square.

And instead of 1 and 16, an infinite number of squares may be found showing

the same property; I demand, however, a general rule, any number being given

which is not a square.

It is sought, for example, to find a square which when multiplied into 149,

109, 433, etc., becomes a square when unity is added.

3 See note 2.
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In the same month (February 1657) Fermat, in a letter to Frenicle, suggests the same
problem, and expressly states the condition, implied in the foregoing, that the solution be
in integers:

Every nonsquare is of such a nature that one can find an infinite number of
squares by which if you multiply the number given and if you add unity to the
product, it becomes a square.

Example .—3 is a nonsquare number, which multiplied by 1, which is a square,
makes 3, and by adding unity makes 4, which is a square.

The same 3, multiplied by 16, which is a square, makes 48, and with unity
added makes 49, which is a square.

There is an infinity of such squares which when multiplied by 3 with unity
added likewise make a square number.

I demand a general rule,—given a nonsquare number, find squares which
multiplied by the given number, and with unity added, make squares.

What is for example the smallest square which, multiplied by 61 with unity
added, makes a square ?

Moreover, what is the smallest square which, when multiplied by 109 and
with unity added, makes a square?

If you do not give me the general solution, then give the particular solution

for these two numbers, which I have chosen small in order not to give too much
difficulty.

After I have received your reply, I will propose another matter. It goes with-
out saying that my proposition is to find integers which satisfy the question, for

in the case of fractions the lowest type of arithmetician could find the solution.

Connected with this problem are a number of others, assembled by Fermat’s friend
Jacques de Billy (1602-1669), a Jesuit teacher of mathematics in Dijon, in his Doctrinae
analyticae inventum novum (ed. S. Fermat; Toulouse 1670), translated in Fermat, Oeuvres,
III, 325-398. They begin with the Diophantine problem (called a double equation), to make
both 2x + 12 and 2x + 5 squares (answer x = 2). Part III (p. 376) begins (we change to
modern notation):

On the procedure for obtaining an infinite number of solutions which give
square or cubic values to expressions in which enter more than three terms of
dilferent degrees.

1. I shall discuss here in particular expressions which contain the five terms
in xi

, x
3

,
x2

, x, and the constant, but I also wish to discuss expressions with four
terms which may be all positive [true], or mixed witli negative [false] terms.
We wish to give these expressions square values (in the case of five terms), or
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cubic ones (in the case of four terms), and this in an infinity of ways. In general

we must say that for the square value at least the coefficient of the term in x4

or the constant term must be a square; as to the cubic values, the coefficient of

x3 or the constant term must be a cube.

Applied to making x4 + 4x3 + 6x2 + 2x + 7 a square, De Billy writes (x2 + 2x + l)
2 =

x4 + 4x3 + 6x2 + 4x + 1, which, set equal to the given form, gives x = 3.

In the case of x4 + 4x3 + 10x2 + 20x + 1 De Billy equates this to (1 + lOx — 45x2
)

2
,

and gets x = -|^§, then he equates it to (x2 + 2x — l) 2
,
and gets x = — 3, and so on.

Then, by substituting for x the value x + x0 ,
where x is a “primitive” solution, for

example x0 = —3, or x0 = —4, and repeating the process, he obtains new solutions. For

x—> x — 3 he requires that x4 — 8x3 + 28x2 — 40x + 4 be a square, which gives x = |;

hence x = J is a solution of the original equation. Here he turned a “false” solution into a

“true” one. This process can he repeated.

It was from these problems by Fermat that Euler, in the paper of 1732/33, started his

research on the “Pell” equation.

8 EULER. POWER RESIDUES

Here follow some contributions of Leonhard Euler (1707-1783) to the theory of numbers.

Euler, born in Basel, Switzerland, studied with Johann Bernoulli, was from 1727 to 1741

associated with the Imperial Academy in Saint Petersburg, from 1741 to 1766 with the

Royal Academy in Berlin (at the time of Frederick II, “the Great”), and from 1766 to his

death again with the Saint Petersburg Academy (at the time of Catherine II, “the Great”).

His productivity was enormous, in the writing both of voluminous papers and of huge text-

books, long standard, directly influencing all mathematicians from Lagrange to Riemann.

The present extract is from his essay, “Theoremata circa residua ex divisione potestatum

relicta” (Theorems on residues obtained by the division of powers), Novi Commentarii

Academiae Scientiarum Petropolitanae 7 (1758/59, publ. 1761), 49-82, Opera omnia, ser. I,

vol. 2, 493-518. In this paper Euler lays the foundation of the theory of power residues. We
have taken theorems 10-14, in which Euler gives a proof of Fermat’s theorem that

a p ~ 1 — 1 = 0 (mod p), p prime and a, p relatively prime. 1 The first nine theorems (in

the s notation) are as follows: 1. When p is a prime and a is relatively prime to p, then no

term of the geometric progression 1, a, a2
,

. . . , a
n

, . . . is divisible by p. 2. When au = r and

av = s, then a“ + v = rs. 3. In the geometric progression 1, a, a2
,

. . . ,
an

,
. . . an infinite set

of terms will be = 1, and their exponents form an arithmetic progression. 4. When a“ = r

and ffl
w + v = rs, then av = s. 5. When oA = 1 and A / 0 is the lowest exponent for which

this congruence holds, then the only powers = 1 are 1, ak
,
a2A

,
a3A , .... 6. When a2n = 1

then an = ± 1 (when a2n = 1 and 2n is as small as possible, then an = — 1). 7. When a A = 1

and A is as small as possible, then all residues of the progression 1, a, a2
, . . . ,

aA_1 are dif-

ferent from each other. 8. When aA = 1, and when we divide the powers as follows:

1, a, a2
, .

.

aA_1
|

aK
,
ax + 1

, .

.

., a2A + 1

|

a2A , . . ., a
3A-1

|

a3\ . . ., then in each section the

1 See Selection 1.6.
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residues appear in the same order. 9. There are no more than p - 1 different residues, and
1 is always among them. The congruence is always modulo p.

The algorithm of paragraphs 37-46 is the same as that used later to prove that the order

of a subgroup is a divisor of the order of the group. Euler’s case is that of cyclical groups.

37. Theorem 10. If the number of different residues resulting from the division

of the powers 1, a, a2
,
a3

,
a4

,
a5

,
etc. by the prime number p is smaller than p — 1,

then there will be at least as many numbers that are nonresidues as there are residues.

Proof. Let a be the lowest power which, divided by p, has the residue 1, and
let A < p — 1; then the number of all the different residues will be = A and
therefore smaller than p — 1 . And since the number of all numbers smaller than

p is = p — 1, there obviously must in our case be numbers that do not appear
in the residues. I claim that there are at least A of them. To prove it, let us

express the residues by the terms themselves that produce them, and we get the

residues

1, a, a2
,
a3 , . .

. ,
ax ~ 1

,

whose number is A, and, reducing them in the usual way, they all become
smaller than p and are all different from each other. As A is supposed to be

< P —
1, there exists certainly a number not occurring among those residues.

Let this number be 1c; now I say that, if /.: is not a residue, then ah and a2k and
a3k etc. as well as aA ~ 'k do not appear among the residues. Indeed, suppose that

a^k is a residue resulting from the power a"; then we would have aa = np + auk

or aa — auk = np and then «“ — a“k = «"(«“ - “ — k) would be divisible by p.

Now o“ is not divisible by/), so aa ““ - k would have to be divisible by p, that

is, the power aa
~ u would, if divided by p, give the residue k contrary to the

assumption. From this it follows that all the numbers k, ak, a2
k, . . ., a x ~ 1k or

numbers derived from them are nonresidues. Moreover, they all are different

from each other and their number is = A; for if two of them, let us say auk and
a v

k, divided by p were to give the same residue r, then auk = mp + r and
avk = np + r and thus auk - avk = (m - n)p, or (au - av)k = (m - n)p
would be divisible by p. Now k is not divisible by p, since we have assumed that

P is a prime number and k < p; then «“ - av would have to be divisible

by p; or«“-' would give, divided by p, the residue 1. which is impossible be-

cause /I < A — 1 and v < A — 1 ;
also p — v < A. Therefore all the numbers

k, ak, a2k, . . ., aA
~ 1

k, if reduced, will be different and their number is = A.

Thus there exist at least A numbers not belonging to the residues so long

as A < p — 1.

38. Corollary 1. Since we have A different numbers that are residues, and just

as many different numbers smaller than p, therefore their total number 2A
cannot be greater than/) — 1, since there are only/) — 1 numbers smaller than p.

39. Corollary 2. If therefore aA
is the lowest power which after division by p

gives the residue 1, and if A < p —
1, then A is certainly not > (p

— l)/2. Hence
we have either A = (p — l)/2 or A < (p — l)/2.
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40. Corollary 3. We have already seen in paragraph 15 that the exponent A

of this lowest power is necessarily smaller than p. Thus either A = p — 1 or

A < p — 1; in which case, when A < p — 1, we know now that either A =

(p — l)/2 or A < (p — l)/2. Therefore there is no number between p — 1 and

(p — l)/2 which could ever have the value A.

41. Theorem 11. Let p he a prime number and ax the lowest power of a which,

divided by p ,
gives the residue 1; let A < (p — l)/2; then the exponent A cannot be

greater than (p
— 1

)
/3 ; thus either A = (p

— l)/3 or A < (p — l)/3.

Proof. Since ax is the lowest power of a which, divided by p, has the residue 1

,

there are at most A different numbers of residues in the series

1, a, a2
,

. . . ,
aA_1

when each term is divided by p. Hence, since A < p —
1, there will be exactly

p — 1 — A numbers that are nonresidues. Let r be one of them. Then we have

seen that all the numbers

r, ar, a2
r, . . . ,

aA_1 r,

reduced by dividing by p to numbers smaller than p, do not appear as residues.

Thus A numbers are excluded from the residues; but when A < (p
— l)/2, then

A < p — 1 — A and thus there exist, besides these numbers, some more that are

nonresidues. Let s be such a number which is neither a residue nor a nonresidue

in the above-mentioned series. Then all the numbers

s, as, a2s , . .
.

,

aK ~ 1
s

will be nonresidues and these numbers will, as shown in the proof given above,

be different from each other. Moreover, none of these numbers, such as au
s,

occurs in the previous series of nonresidues, that is, we never have a“s = a>'r

.

For if avr = aus, then we would have s — a v ~ ur, or (for p > v) s = ax + v ~ ur. This

means that s would occur in the first series of nonresidues—contrary to our

assumption. Thus, when A < (p — l)/2, there exist so far at least A numbers

that are nonresidues; and thus we have A residues and 2A nonresidues and all

these numbers are smaller than p. Then it cannot be that their sum 3A is greater

than p — 1, or we cannot have A > (p — l)/3. Thus A = {p — l)/3 or

A < (p — l)/3 so long as A < (p — l)/2 andp is a prime.

42. Corollary 1. If therefore A is not smaller than (p
— l)/3, A must be

= (p — l)/3, if we suppose A < (p — l)/2. If we omit this last restriction and

if we know that A < (p
— l)/3 does not hold, then A must necessarily be either

= (P ~ l)/3, or — (p — l)/2, or = p - 1.

43. Corollary 2. But if A = (p — l)/3 or A = (p — l)/2, then a”" 1 divided

by p gives the residue 1, for if a'" has the residue 1 then the same holds for a2X

and a3X .

44. Theorem 12. If aA
is the lowest power of a which divided by p gives the

residue 1, and if A < (p — l)/3, then A cannot be > (p — l)/4; instead either

A = (p — l)/4 or A < (p — l)/4.
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Proof. As the number of all different residues resulting from the division of
powers of a by p is = A, and as they originate from the following terms,

1, a, a2 , . .
.

,

aA_1
,

then, because of A < (p — l)/3, there originate twice that many numbers that
are nonresidues from the following two progressions

and
r, ar, a2

r, . . ., a
>'~ 1r

s, as, a2s, ..., a*

~

1
s.

The total number of these residues and nonresidues is = 3 A and therefore

smaller than p - 1 ;
thus there are still more numbers that are nonresidues. Let

t be one such; then, as shown above, all the numbers

t, at, a2t, . .
. ,
aA ~ H,

whose number is = A, will also be nonresidues. And these numbers not only
differ from each other when p is a prime number, but also from all the previous
ones, and thus the number of all these residues and nonresidues together = 4A.

As all of them are smaller than p, we cannot have 4A > p — 1; consequently
either A becomes = (p — l)/4 or A < (p — l)/4, always supposing that
A < (p — l)/3 and p is prime.

45. Corollary 1. In a similar way it can be shown that, when A < (p - l)/4,

we never can have A > (p — l)/5 and thus we have also here A = (p — l)/5 or
A < (P~ l)/5.

46. Corollary 2. And in general, if it is known that A < (p - \)jn, then one
proves in the same way that we cannot have A > (

p

— I
) {'tt -f- I ) . therefore we

must have A = (p - 1 )/(n + 1) or A < (p - 1 )(n + 1).

47. Corollary 3. Wherefrom it appears that the number of all numbers that
cannot be residues is either = 0, or = A, or = 2A or any multiple of A; for if

there are more than n\ of such numbers, then, if any at all, A new ones are
added to them, so as to make their number = (n + 1)A; and if this does not
yet comprise all the nonresidues, then at once A new ones are added.

48. Theorem 13. Let p be a prime and «A the lowest power of a, giving the residue

1 when divided by p; then the exponent A is a divisor of the number p — 1.

Proof. The number of all different residues is thus = A; therefore the number
of the remaining numbers smaller than p that cannot be residues will be
= p — 1 - A; but this number is (§47) a multiple of A, say n\, so that

p — 1 — A = wA, wherefrom results

n + 1

This makes it clear that when A is not = p — 1 then it certainly is equal to a
divisor ofp — 1

.
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49. Theorem 14. Let p be a prime number and a be prime to p; then the power

av ~ 1 divided by p has the residue 1

.

Proof. Let aA be the lowest power of a giving the residue 1 when divided by p.

Then, as we have seen, A will be < p and we proved above that in this case either

X = p — 1 or A is a divisor of the number p — 1 . In the first case the theorem

holds, and av ~ x gives, divided by p, the residue 1. In the other case, where A is

a divisor of p — 1, we have p — 1 = wA; but because the power aA gives,

divided by p, the residue 1, therefore also all these powers a2A
, «

3A
,
etc. and anA

or ap ~ 1 divided by p will give the residue 1 . Thus a”
~ 1 divided by p will always

have the residue 1

.

50. Corollary 1. Because the power ap_1 gives the residue 1 -when divided by

the prime number p, the formula ap ~ 1 — 1 is divisible by p, so long as a is a

number prime to p, that is, so long as a is not divisible by p.

51. Corollary 2. If, therefore, p is a prime, then all powers of exponent p — 1,

such as np ~ 1
, are divisible by p, or leave 1 as remainder. The latter happens

if n is prime to p ,
the first if this number n is divisible by p.

52. Corollary 3. Hence, if p is a prime number, and the numbers a and b are

prime to p, then the difference of the powers ap ~ 1 — bv
~ 1 will be divisible by p.

Indeed, since av ~ 1 — 1 as well as 6P
" 1 — 1 are divisible by p, so will also their

difference a p ~ 1 — b p ~ 1 be divisible by p.

53.

Scholium. This is a new proof of the famous theorem that Fermat once

stated, and it is completely different from the one I have given in the Comment.

Acad. Petropol., tome VIII. 2 There I started out from Newton’s series expansion

of the binomial (a + b)
n

,
using a reasoning seemingly quite remote from the

proposition; here, on the other hand, I prove the theorem starting from prop-

erties of the powers alone, which makes the proof seem much more natural.

Moreover, other important properties of the residues of the powers when they

are divided by a prime number come to light. Indeed, it is shown for a prime

number p not only that the expression ap_1 — 1 is divisible by p, but that,

under certain conditions, a simpler expression, ax — 1, is divisible by p, and that

in that case the exponent A is always a divisor of p — 1

.

In the remaining sections Euler proves several theorems on power residues, of which

Theorem 19 states that if am = 1 (mod p = mn + 1), then there always exist numbers x

and y such that axn — y
n = 0. Here p is a prime. Our notation is Euler’s, except that we

have written a/b where Euler writes

2 “Theorematum quorundam ad numeros primos spectantium demonstration’ Com-
mentary Academiae Scientiarum Petropolitanae 8 (1736, publ. 1741), 141-146, Opera omnia,

ser. I, vol. 2, 35-37. The proof runs as follows. First it is proved by means of the binomial

expansion of (1 + l)”" 1 that

op - 1 _ , P(P ~ U
,
P(P ~ 1)(P ~ 2)(y - 3)

1-2 1-2-3-4

is divisible by p if p is an odd prime. Then by a similar expansion of (1 + a)p it is shown
that (1 + o)p — (1 + a) — (ap — a) = 0 (mod p) if a is not a multiple of p. Since 2P — 2 = 0,

the proof follows by complete induction.
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9 EULER. FERMAT’S THEOREM FOR n = 3, 4

Euler received much of his inspiration for his work on number theory from the study of

Fermat (see Selections 1.6, 7). Fermat’s theorem that xn + y
n = zn cannot be solved for

positive integers x, y, z, n, n > 2, attracted him and he gave proofs for the cases n = 3

and n = 4. In a paper of 1738 entitled “Theorematum quorundam arithmeticorum demon-

strationes,” Commentarii Academiae Scientiarum Petropolitanae 10 (1738, publ. 1747),

125-146, Opera omnia, ser. I, vol. 2, 38-58, he gave a proof for the case n = 4, adding a

number of related theorems. A proof for n = 4 had already been given by Fermat’s corre-

spondent Bernard Frenicle (c. 1605-1675) in his Traite des triangles rectangles en nombres

(Paris, 1676). Frenicle here used the so-called method of infinite descent, which Euler also

employed. This method is as follows: suppose that a solution of the problem in question is

possible in positive integers: then we show how to derive from it a solution in smaller

positive integers, and so on. But since this process cannot go on indefinitely, we reach a

contradiction and thus show that no solution is possible. For this method, used by Fermat

and even before him (G. Enestrom, Bibliotheca Mathematica 14 (1913-14), 347), see, for

example, 0. Ore, Number theory and its history (McGraw-Hill, New York, 1948), 199.

Euler also gave a proof for n — 4 in his Vollstandige Anleitung zur Algebra (Saint Peters-

burg, 1770), Opera omnia, ser. I, vol. 1 (see also ser. I, vol. 5), which has been edited also by

J. E. Hofmann (Reclam Verlag, Stuttgart, 2nd ed., 1959). We give the English translation

by J. Hewlett, Elements of algebra (5th ed., Longman, Orme, London, 1840), 405-413.

Euler’s Theorem 1 is preceded by some lemmas and corollaries; lemma 2 states that, if

a2 + b2 is a square and a, b are relative primes, then a = p
2 — q

2,b = 2pq, where p and q

are relative primes, one even, the other odd (hence such a square is always odd).

Theorem 1 . The sum of two biquadratic numbers such as a* + h4 cannot be a

square number unless one of the two biquadratic numbers vanishes.

Proof. I shall change the theorem to be demonstrated in such a way that I

shall show that if in one case a4 + 64 were a square, no matter how large the

numbers a and b, then I can progressively find smaller numbers a and b and at

the end can reach the smallest integral numbers. Since there are no such

smallest numbers of which the sum of the biquadratic numbers is a square, we
must conclude that there are no such among the largest numbers.

Let therefore a4 + 6 4 be a square and a and b be relative primes, since if they

were not relative primes, then I could reduce them by division to primes. Let a

be an odd number; then b must be even, since necessarily one number must be

even, the other one odd. Let us therefore write

a2 = p2 - q
2

,
b2 = 2pq;

here the numbers p and q must be relative primes, the one even, the other odd.

But if a2 = p
2 — q

2
,
then it is necessary that p be odd, because otherwise

p
2 — q

2 could not be a square. Hence p is an odd number and q an even one.

Since 2pq must also be a square it is necessary that both p and 2q be a square,
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because p and 2q are relative primes. Since p2 — q
2

is a square, it is necessary

that

p = m2 + n2 and q = 2mn,

where again m and n are relative prime numbers, of which one is even, the other

odd. But since 2q is a square, 4mn, or mn is a square, hence to and n are squares.

If we therefore put

to = x2
,

n — y
2

,

then we shall have

p = m2 + n2 = xi + y
i

,

which must equally be a square. From this it follows that if a4 + b4 were a

square, then also a;
4 + y

4 would be a square, but it is clear that the numbers x

and y would be far smaller than a and b. In the same way we shall from the

biquadratic numbers x4 + y
4 again obtain smaller ones, of which the sum is a

square, and we progressively reach the smallest biquadratic number among the

integers. But since there are no smallest biquadratic numbers of which the sum
gives a square, it is clear that there are no very large numbers either. However,

if in one pair of the biquadratic numbers one of the terms is zero, then in all

remaining pairs the one term vanishes, so that here nothing new results.

Corollary 1 . Since therefore the sum of two biquadratic numbers cannot be a

square, it is a fortiori impossible that the sum of two biquadratic numbers

results in a biquadratic number.

Corollary 2. Although this demonstration pertains only to integers, yet it also

shows that we cannot find among fractions two biquadratic numbers of which

the sum is a square. Indeed, if («
4
/to

4
) + (b

4jn 4
)
were a square, then a 4n4 + 64to4

,

which is a sum of integers, would also be a square, which we have proved to be

impossible.

Corollary 3. By means of the same proof we can conclude that no numbers

p and q exist such that p, 2q and p
2 — q

2 are squares; if such numbers existed

then there would be values for a and b, which would render a4 + b 4 square; for

then a — V

p

2 — q
2 and b = V2pq.

Corollary 4. Suppose therefore p = x2 and 2q = 4y
2

,
then p

2 — q
2 = x4 — 4y

4
.

Then it could not at all happen, that x4 — 4y
4 were a square. Nor could 4a:

4 — y
4

be a square; for then 16a;
4 — 4//

4 would be a square, which reduces it to the

former case, because 16a;4 is a biquadratic number.

Corollary 5. From this it follows that also ab(a2 + b2
)
can never be a square.

For the factors a, b, a2 + b2
,

all relative primes, would have to be squares,

which is impossible.

Corollary 6. In a similar way, there cannot exist relatively prime numbers a

and b such as to make 2ab(a2 — b2
)
a square. This follows from Corollary 3,

where it was proven that no numbers p and q exist such as to make p, 2q,

p
2 — q

2 squares. And all this is valid also for numbers that are not relative

primes, and the same for fractions according to Corollary 2.
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Euler continues with nine more theorems; Theorem 2 states that a4 - 64 cannot be a

square unless b = 0 or b = a, and Theorem 7 proves Fermat’s theorem (a marginal note to

Bachet’s Diophantus, VI, 26) that no triangular number (that is, a number of the form
\n{n + 1)), except 1, can be a biquadratic number.

The following proof of Fermat’s theorem on the impossibility of xn + y
n = zn (n > 2)

for the case n = 3 is also taken from Euler’s Vollstandige Anleitung zur Algebra and the

English translation by Hewlett, pp. 450-454. The proofs are found in the last section of the

book, which does not deal with algebra at all, but with indeterminate equations. Here, in

Art. 155, Euler demonstrates that 1 + x3 cannot be a cube except for x = 0 and x = — 1,

as a special case of an investigation to find out whether the form a + bx + cx2 + dx3 can
be a cube (an investigation started by Fermat; see Selection 1.7).

243. Theorem. It is impossible to find any two cubes, whose sum , or difference,

is a cube.

We shall begin by observing, that if this impossibility applies to the sum, it

applies also to the difference, of two cubes. In fact, if it be impossible for

x3 + y
3 — z3

,
it is also impossible for z

3 — y
3 — x3 . Now, z

3 — y
3

is the dif-

ference of two cubes; therefore, if the one be possible, the other is so likewise.

This being laid down, it will be sufficient, if we demonstrate the impossibility

either in the case of the sum, or difference; which demonstration requires the

following chain of reasoning.

I. We may consider the numbers x and y as prime to each other; for if they

had a common divisor, the cubes would also be divisible by the cube of that

divisor. For example, let x = 2a, and y = 2b, we shall then have x3 + y
3 =

8a3 + 8b3
;
now if this formula be a cube, a3 + b3 is a cube also.

II. Since, therefore, x and y have no common factor, these two numbers are

either both odd, or the one is even and the other odd. In the first case, z would
be even, and in the other that number would be odd. Consequently, of these

three numbers, x, y, and z, there is always one that is even, and two that are

odd; and it will therefore be sufficient for our demonstration to consider the

case in which x and y are both odd: because we may prove the impossibility in

question either for the sum, or for the difference; and the sum only happens to

become the difference, when one of the roots is negative.

III. If therefore x and y are odd, it is evident that both their sum and their

difference will be an even number. Therefore let \(x + y) = p, and|(* — y) = q,

and we shall have x = p + q, and y = p — q; whence it follows, that one of the

two numbers, p and q, must be even, and the other odd. Now, we have, by
adding (p + q)

3 = x3
,
to (p - q)

3 = y
3

,
x3 + y

3 = 2p3 + 6pq
3 = 2p(p

2 + 3q
2
);

so that it is required to prove that this product 2p(p
2 + 3q

2
)
cannot become a

cube; and if the demonstration were applied to the difference, we should have
x3 — y

3 — 6p2
q + 2q

3 — 2q(q
2 + 3p

2
), a formula precisely the same as the

former, if we substitute p and q for each other. Consequently, it is sufficient for

our purpose to demonstrate the impossibility of the formula, 2p(p
2 + 3q

2
),

becoming a cube, since it will necessarily follow, that neither the sum nor the

difference of two cubes can become a cube.
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IV. If therefore 2p(p
2 + 3q

2
)
were a cube, that cube would be even, and

therefore divisible by 8: consequently, the eighth part of our formula, or

lp(p
2 + 3q

2
), would necessarily be a whole number, and also a cube. Now, we

know that one of the numbers p and q is even, and the other odd; so that

p
2 + 3q

2 must be an odd number, which not being divisible by 4, p must be so,

or p/4 must be a whole number.

V. But in order that the product \p(p
2 + 3q

2
)
may be a cube, each of these

factors, unless they have a common divisor, must separately be a cube; for if a

product of two factors, that are prime to each other, be a cube, each of itself

must necessarily be a cube; and if these factors have a common divisor, the case

is different, and requires a particular consideration. So that the question here is,

to know if the factors p, and p
2 + 3q

2
, might not have a common divisor. To

determine this, it must be considered, that if these factors have a common
divisor, the numbers p

2
,
and p

2 + 3q
2

,
will have the same divisor; that the

difference also of these numbers, which is 3q
2

,
will have the same common

divisor with p
2

. And since p and q are prime to each other, these numbers p2
,

and 3q
2

, can have no other common divisor than 3, which is the case when p
is divisible by 3.

VI. We have therefore two cases to examine: the one is, that in which the
factors p, and p2 + 3q

2
,
have no common divisor, which happens always, when

p is not divisible by 3; the other case is, when these factors have a common
divisor, and that is when p may be divided by 3; because then the two numbers
are divisible by 3. We must carefully distinguish these two cases from each
other, because each requires a particular demonstration.

VII. Case 1. Suppose that p is not divisible by 3, and, consequently, that our
two factors pi4, and p

2 + 3q
2

,
are prime to each other; so that each must

separately be a cube. Now, in order that p
2 + 3

q

2 may become a cube, we have
only, as we have seen before, to suppose p + qV — 3 = (t + uV—3) 3

,
and

p — qV -3 = (t - uV - 3)
3

,
which gives p2 + 3q

2 = (t
2 + 3m2

)

3
,
which is a

cube. This gives us p = t
3 - Qtu2 = t(t

2 - 9m2
), and q = 3t2u - 3m3 =

3m(<2 - m2
). Since therefore q is an odd number, u must also be odd; and, con-

sequently, t must be even, because otherwise t
2 — u2 would be even.

VIII. Having transformed p
2 + 3q

2 into a cube, and having found p =
t{t

2 — 9m2
)
= t(t + 3u)(t — 3m), it is also required that pj4, and, consequently,

2p, be a cube; or, which comes to the same, that the formula 2t(t + 3m) (i - 3m)

be a cube. But here it must be observed that t is an even number, and not divis-

ible by 3; since otherwise p would be divisible by 3, which we have expressly

supposed not to be the case: so that the three factors, 21, t + 3m, and t — 3m, are

prime to each other; and each of them must separately be a cube. If, therefore,

we make t + 3u — f
3

,
and t — 3m = g

3
,
we shall have 21 — f

3 + g
3

. So that,

if 2 1 is a cube, we shall have two cubes /
3

,
and g

3
,
whose sum would be a cube,

and which would evidently he much less than the cubes x3 and y
3 assumed at

first. Indeed, as we first made x = p + q, and y = p — q, and have now deter-

mined p and q by the letters t and u, the numbers x and y must necessarily be
much greater than t and u.

IX. If, therefore, there could be found in large numbers two such cubes as

we require, then we should also be able to assign in much smaller numbers two
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cubes, whose sum would make a cube, and in the same manner we should be led

to cubes always less. Now, as it is very certain that there are no such cubes

among small numbers, it follows, that there are not any among greater numbers.

This conclusion is confirmed by that which the second case furnishes, and which

will be seen to be the same.

X. Case 2. Let us now suppose, that p is divisible by 3, and that q is not so,

and let us make p = 3r\ our formula will then become f r(9r
2 + 3q

2
), or

|r(3r2 + q
2
); and these two factors are prime to each other, since 3r2 + q

2
is

neither divisible by 2 nor by 3, and r must be even as well as p; therefore each

of these two factors must separately be a cube.

XI. Now, by transforming the second factor 3r2 + q
2

,
or q

2 + 3r
2

,
we find,

in the same manner as before, q = t(t
2 — 9m2

), and r = 3u(t2 — m2
); and it must

be observed, that since q was odd, f must be here likewise an odd number, and

u must be even.

XII. But fr must also be a cube; or multiplying by the cube -
2
-
7
- we must have

|r, or 2u(t2 — m2
)
= 2u(t + u)(t — u) a cube; and as these three factors are

prime to each other, each must of itself be a cube. Suppose therefore t + u = /
3

,

and t — u = g
3

,
we shall have 2m = /

3 — g
3

;
that is to say, if 2m were a cube,

/
3 — g

3 would be a cube. We should consequently have two cubes, f
3 and g

3
,

much smaller than the first, whose difference would be a cube, and that would

enable us also to find two cubes whose sum would be a cube; since we should

only have to make/3 — g
3 = h3

,
in order to have/ 3 = h3 + g

3
,
or a cube equal

to the sum of two cubes. Thus, the foregoing conclusion is fully confirmed; for

as we cannot assign, in large numbers, two cubes whose sum or difference is a

cube, it follows from what has been before observed, that no such cubes are to

be found among small numbers.

In Art. 245 Euler shows how to find to two given cubes a3 and b3 a third cube x3 such

that a3 + b3 + x3 be a cube (for example, when a = 2, b = 3, x = Yr and the sum of

their cubes is (Yr)
3
); in Art. 247 he proves that x3

± y
3 = 2

z

3
is impossible except for

x = y, and in Art. 248 he shows how to find three cubes whose sum is again a cube (for

example, 143 + 17 3 + 7 3 = 203
, 8

3 + 63 + l
3 = 93

,
3 3 + 43 + 53 = 63

). This last example

leads him in Art. 249 to find more sets of three consecutive numbers, which, when cubed and

added, give again a cube.

10 EULER. QUADRATIC RESIDUES AND THE RECIPROCITY THEOREM

The present paper, “ Observationes circa divisionem quadratorum per numeros primos,”

Opuscula analytica (Saint Petersburg, 1783-1785), I, 64-84, Opera omnia, ser. I, vol. 3,

497-512, published in the year of Euler’s death, is a new presentation of some of his older

work on quadratic residues and also contains new results. It ends with his formidation of

what we now call the reciprocity theorem of quadratic residues.
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OBSERVATIONS ON THE DIVISION OF SQUARE NUMBERS BY PRIMES 1

1. Hypothesis. If the squares a, h, c, d, etc. of the numbers a2
,
b2

,
c
2

,
d 2

, etc.

are divided by an arbitrary prime number P. then we denote by the Greek

letters a,
ft, y, 8, etc. the residues left after the division.

2. Corollary 1. Since therefore the square aa divided by P leaves the residue

a, then, A being the quotient, aa = AP + a, and thus aa — a will be divisible

by P. and similarly the expressions bb — fi, cc — y, dd — 8 will be divisible by
the same divisor P.

3. Corollary 2. The squares (a + P) 2
,
(a + 2P) 2

, (
a + 3P) 2 and in general

(a + nP) 2 also leave a as residue, if they are divided by the given P. From which

it is clear that from the squares of the large numbers the same residues appear

upon division by P as from the squares of the smaller numbers.

4. Corollary 3. Since furthermore the square (P — a) 2
,
divided by P, gives

the same residue as the square a2
,
it is clear that (if a > \P, then P — a < \P),

we obtain all different residues from square numbers which are less than half

the divisor P.

5. Corollary 4. Hence if we want all residues that are obtained from the divi-

sion of squares by the given divisor P, then it suffices to consider only those

squares of which the roots are not larger than the half of P.

6. Corollary 5. Hence if the divisor P — 2p + 1, and if we divide all square

numbers 1, 4, 9, 16, 25, etc. by it, no more different residues can be produced

than there are units in the number p, and those result from the squares of the

numbers 1, 2, 3, 4, . .
.

,

p. The squares of the following numbers, p + 1, p + 2,

p + 3, will reproduce the same residue in reverse order.

7. Scholium. It is manifest that the two squares p
2 and (p + l)

2 divided by
the number 2p + 1 give the same residue, since their difference is divisible by

2p + \. Hence in general, if the difference of two arbitrary numbers M — N be

divisible by 2p + 1 ,
then it is necessary that each M and N divided by 2p + 1

give the same remainder. Hence also, since

(p + 2)
2 - (p - l) 2 = 3(2p + 1),

and each number
(

p

+ 2)
2

, (p
— l)

2
is itself a square, they must give the same

residue, and, in general, the square (p + n + l)
2 will give the same residue as

the square (p — n) 2
. Hence it is clear that there are no more residues than there

are units in the number p. Whether these residues are either all different or

w hether some of them are equal is here not decided; and insofar as we admit all

kinds of divisors, both cases may occur. However, when the divisor 2p + 1 is

prime, then all these residues are different from each other, as I prove in the

following way.

1 The foundations of the theory of quadratic residues, which are laid in this paper, can
already be found in Euler’s “ Demonstrationes theorematis Fermatiani omnem nuraerum
sive integrum sive fractum esse summam quatuor pauciorumve quadratorum” (Demon-
stration of Fermat’s theorem that every number, either integer or fraction, is the sum of
four or fewer squares), Novi Commentarii Academiae Scientiarum Petropolitanae 5 (1754/55,
publ. 1760), 13—58, Opera omnia

, ser. I, vol. 2, 338—372. This paper also deals with moduli
that are not prime. The text has a2

,
not aa.
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8. Theorem 1. If the divisor P = 2p + 1 is a prime number and all squares

1, 4, 9, 16, . . . up to p
2 are divided by it, then all residues obtained in this way are

different from each other, and their number is therefore = p.

Demonstration. Let a and b be two arbitrary numbers less or at any rate not

larger than p. We must show that when their squares a2 and b2 are divided by
the prime number 2p + 1, they will certainly give different residues. Indeed, if

they were to give the same residue, then their difference aa — bb would be

divisible by 2p + 1 and therefore, since 2p + 1 is prime, in aa — bb =
(a + b)(a — b) one of the factors would have to be divisible by 2p. But since

a < p and b < p, or at any rate a not > p, the sum a + b and a fortiori the

difference a — b are less than the divisor 2p + 1 ,
and lienee neither of these two

can be divided by 2p + 1. From this it clearly follows that all squares whose

roots are not larger than p certainly give residues different from each other when
divided by the prime number 2p + 1

.

The corollaries claim (1) that if 1,4, 9, 16, etc. are divided by 2p + 1, the number of

residues will be exactly p, (2) that these can be obtained from the numbers 1,4,9, 16, ...

,

_y>,

(3) that there are therefore p residues and p nonresidues.

12. Scholium. I shall call those numbers less than 2p + 1, which are excluded

from the order of residues, nonresidues. 2 Their number is always equal to the

number of residues. It is useful to study this difference between residues and

nonresidues correctly, and for this purpose I shall present here for some smaller

prime divisors the residues and nonresidues,

Divisor 3, p = 1 Divisor 5, p = 2 Divisor 7, p = 3

Square 1 Squares 1, 4 Squares 1, 4, 9

Residue 1 Residues 1, 4 Residues 1, 4, 2

Nonresidue 2 Nonresidues 2, 3 Nonresidues 3, 5, 6

Divisor 19, p = 9

Squares 1, 4, 9, 16, 25, 36, 49, 64, 81

Residues 1, 4, 9, 16, 6, 17, 11, 7, 5

Nonresidues 2, 3, 8, 10, 12, 13, 14, 15, 18

We shall first find for any prime divisor such memorable properties about

these residues and nonresidues that it is worth while to study them properly, so

that there seem to be here a considerable number of interesting additions to the

theory of numbers.

13. Theorem 2. If in the order of residues derived from the divisor P there are two

numbers a and /3, then there also occurs their product a/3, if it is less than the divisor

P, but if it is larger, then we should take in its place a/3 — P or a/3 — 2P, or in

general a/3 — nP until a number appears less than P.

2 This concept, not yet fully developed in the paper of note 1 ,
is here introduced and

leads to Theorems 4 and 5.
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Demonstration. Let the residues a and ft result from the division of the squares

aa and bb by the divisor P. Then we have

aa = AP + a, and bb = BP + ft,

so that

aabb = ABP2 + (Aft + Ba)P + aft.

Hence, if aabb is divided by the divisor P, the residue is aft, or if aft is larger than

P, we must take that residue which is obtained when aft is divided by P, which

will be either aft — P or aft — 2

P

or aft — 3P or, in general, aft — nP such that

aft — nP < P.

The corollaries claim (1) that, if a is a residue, then so also are aa, a3
,
a4

,
etc.; for higher

powers we must subtract the necessary multiples of P; (2) that when P = 2p + 1 and a

is a residue, then, if a0
, a

1
,
a2

,
a3

,
a4

,
etc. are divided by P, there can be no more than p

residues; hence (3) that ap divided by 2p + 1 gives a° = 1, which theorem Euler has proved

before. 3 In a scholium he observes that negative residues are also admissible.

18. Theorem 3. If in the sequence of residues obtained from a divisor P there

occur two residues a and
ft,

then there also occurs the residue (a + nP)lft, where n

is taken so large that (a + nP)ft3 is an integer. This can always be done.

Demonstration. Let aa and bb be squares which produce, after division by P,

the residues a and
ft.

Then we have

aa = AP + a, and bb = BP + ft.

We now ask for a c such that c — (a + mP)/b is an integer. Then

aa + 2amP + mmPP a + (A + 2am + mmP)P
CC =

bb
=

ft + BP

will be an integer. Since the numerator also has the residue a, and the de-

nominator the residue
ft,

it is clear that, if cc be divided by P, the residue

will be reduced to the proposed form. Indeed, let us put, for the sake of brevity,

A + 2am + mmP = D, so that cc = (a + DP)
/(ft + BP); then if

(a + nP)lft = y, it is necessary to show that cc = CP + y, so that the resi-

due from the division of the square cc by the number P may be = y. But
a = fty — nP, and hence we can write

cc
fty + (D - n)P

ft + BP CP + y,

3 In this paper, “Theoremata circa divisores numerorum,” Novi Commentarii Academiae
Scientiarum Petropolitanae 1 (1747/78, publ. 1750), 20—48, Opera omnia, ser. I, vol. 2, 62—85,

Theorem 11.
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from which it follows that

(D - n)P = (pC + yB + BCP)P,
or

D - n = PC + yB + BCP,

which is exactly the necessary relation between the coefficients of P that will

produce integers.

Euler gives another proof, where he takes an n such that a + nP = fly, then an m such
that a + mP = be. Then if b2c2 = EP + py and b2 = BP + p, cc = CP + x, then
b2c2 = fix + (PC + Bx + BCP)P, or x = y. The corollaries state (1) that since 1 is always
a residue, p = (1 + nP)/a occurs among the residues, so that ap is equivalent to 1 among
the residues; (2) that to every a there is therefore a p such that <*p is equivalent to 1, and
these two reciprocal residues are different unless both are + 1 or - 1 ;

indeed, from a2 =
1 + nP it follows that a = ± (1 + mP); (3) that in this way we can associate every residue

in the sequence of residues with its reciprocal, except the solitary 1 ,
or also - 1 or P — 1

when this appears between the residues. In a scholium Euler points to the importance of this

occurrence for the proof of the “most beautiful theorem” (ad demonstrationem facilem
Theorematis pulcerrimi nos manducet) that every prime of the form 4q -f 1 is the sum of
two squares. 4 If a, p, y are residues and 91, 93, (£ nonresidues, then the aft are residues, the
a91 nonresidues, and the 9(93 residues.

23. Theorem 4. If the divisor P is of the form 4q + 3, then — 1 or P — 1 is

certainly a nonresidue.

Demonstration. When we write P = 2p + 1, then p = 2q + 1, an odd num-
ber. Hence the number of all residues will be odd. If - 1 were to appear in the
sequence of residues, then to every residue a would correspond another residue
— a, and the sequence of residues could be written as follows:

+ 1, +<x, +p, +y, +8, etc.,

— 1, —a, — p, —y, —8, etc.,

and the number of residues would be even. But since this number is certainly

odd, it is impossible that — 1 or P — 1 should appear in the sequence of residues;

hence it belongs in the sequence of nonresidues.

4 Euler published this theorem in his “ Demonstratio theorematis Fermatiani omnem
numerum primum formae in + 1 esse summam duorum quadratorum,” Novi Commentarii
Academiae Scientiarum Petropolitanae 5 (1754/55, publ. 1760), 3-13, Opera omnia, ser. I,

vol. 2, 328-337. See also pp. 295-327, and Theorem 5.
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The corollaries state (1) that if for prime P = 4q + 3 a residue a occurs, then -a or

P — “ is a nonresidue; if -/J is a residue, then +(8 is a nonresidue; (2) that if a is the residue

of a, then there is no number x with residue — a, hence no sum of squares a2 + x2 exists

which is divisible by 4q + 3; (3) that if a and /3 are residues belonging to a and b, then
pa2 — ab 2

is divisible by 4c/ + 3; (4) that the form a2
/3 + ax2

is not divisible by 4g + 3;

and (5) that no form /3a
2
c2 + ac2x2

is divisible by 4q + 3 unless c
2

is divisible. A scholium

gives the sequence of residues for P = 4q + 3 in the cases P = 3, 7, . .
.

,

31, for example,

Divisor 3, Residue 1;

Divisor 7, Residues 1, —3, +2;
Divisor 11, Residues 1, +4, —2, +5, +3; . . .

Divisor 31, Residues 1, +4, +9, -15, -6, +5, -13, +2, -12, +7, -3, -11, +14,
+ 10

, + 8 .

Hence all numbers not larger than half the divisor appear with sign + or —
,
and none

appears with both signs. If all the signs are changed, we get the nonresidues. Hence the

forms a2 + b2
,
a2 — 15b2

,
a2 — 6b2 , etc. are not divisible by 31.

30. Theorem 5. If the divisor P is a prime of the form iq + 1, then the number
— 1 or P — 1 is certainly a residue.

The demonstration follows the same indirect reasoning as that of Theorem 4, pairing each
residue off against its reciprocal. The corollaries state (1) that if a in this case is a residue,

then — a is a residue; (2) that if a belongs to a, — a to b, then a2 + b2 is divisible by 4g + 1

;

(3) that b2 need not be larger than 4q
2

; (4) and (5) give still other divisible forms. Scholium 1

points to the importance of the reciprocal numbers a, (1 + nP)/

a

and gives a list of them
for all prime divisors from 3 to 29. This fact, writes Euler, gives a simple proof of Fermat’s
theorem that every prime of the form 4g + 1 is the sum of two squares. Scholium 2 gives a

list of divisors of the form iq + 1 with their residues paired against their reciprocals, — 1

included in all cases. Then he draws the consequences in:

Scholium 3. Although here the number — 1 appears among the residues when-
ever the divisor is a prime number of the form iq + 1

,
yet, when another prime

number s is assigned as the form of prime divisors, it cannot be demonstrated
that this number s can be found in the residues. We can mention this theorem:

If the prime divisor is of the form 4ns + (2x + l)
2

,
s being a prime number,

then in the residues there occur the numbers +s and —s, and another one
similar to this:

If the prime divisor is of the form 4ns — (2x + l)
2

,
.s being a prime number,

then in the residues there occurs the number s, and — s will be among the non-
residues.
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When, on the contrary, — s occurs in the residues, and -f s in the nonresidues,

cannot in general he defined. For special cases, however, the situation can be

indicated thus

:

When then the prime divisor must be

r— 2 is a residue

\ + 2 is a nonresidue

(— 3 is a residue

\+ 3 is a nonresidue

etc. to ± 23

P = 8n + 3;

P = 12n + 7;

P = 92m + 3, 23, 27, . . ., 87.

The contemplation of such cases provides this theorem

:

If the prime divisor is of the form 4ns — 4z — 1, excluding all values con-

tained in the form 4ns - (2x + l) 2
,
s being a prime number, then —s occurs

among the residues, and +s is a nonresidue.

To these theorems we can still add the following

:

If the prime divisor is of the form 4ns + 4z + 1, excluding all values con-

tained in the form 4ns + (
2x + l)

2
,
s being a prime number, then both +s and

— s occur among the nonresidues.

I add these theorems so that whoever likes to indulge in such speculation may

inquire into their demonstration, since it cannot be doubted that from this the

theory of numbers will receive great additions.

Conclusion ,

6 These four final theorems, of which the demonstration from now

on is desired, can be nicely formulated as follows:

Let s be some prime number, let only the odd squares 1, 9, 25, 49, etc. be

divided by the divisor 4s, and let the residues be noted, which will all be of the

form 4g + 1, of which any may be denoted by the letter a, and the other

numbers of the form Aq + 1, which do not appear among the residues, be

denoted by some letter 2t, then we shall have

divisor a prime

number of the form

4ns + a

Ans — a

4ns + 21

4ns — 21

then

+ s is a residue, and — s is a residue;

+ s is a residue, and — s is a nonresidue;

+ s is a nonresidue, and —s is a nonresidue;

+ s is a nonresidue, and — s is a residue.

6 This is Euler’s formulation of the theorem that Legendre and Gauss made known as the

“reciprocity theorem of quadratic residues,” and of which Legendre’s demonstration is

given in Selection 1.12. The theorem is already contained in undeveloped form in a paper by

Euler, “Theoremata circa divisores numerorum in hac forma poo + qbb contentorum,”

Commentarii Academiae Scientiarum Petropolitanae 14 (1744/46, publ. 1751), 151—181,

Opera omnia, ser. I, vol. 2, 194-222. It was L. Kronecker who in 1875 pointed out the

importance of this theorem of Euler’s for the history of the reciprocity theorem: Werke, ed.

K. Hensel (Teubner, Leipzig), II (1903), 1-10.
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11 GOLDBACH. THE GOLDBACH THEOREM

Christian Goldbach (1690-1764) was a German who for many years was in a leading position

at the Saint Petersburg Academy of Sciences. He had wide scientific interests, but was

especially devoted to number theory and analysis. His correspondence with Euler, which

extends from 1729 to 1764, was partly published by Euler’s greatgrandson Paul Heinrich

Fuss in 1843 and has recently been published in full by A. P. Juskevich and E. Winter,

Leonhard Euler und Christian Goldbach (Abhandlungen der Deutschen Akademie der

Wissenschaften zu Berlin, Klasse fur Philosophie, November 1, 1965; Akademie-Verlag,

Berlin), with ample commentary. We select from this correspondence part of the letters

dealing with the famous Goldbach theorem (or hypothesis). The originals are written in a

curious amalgam of German and Latin, the technical expressions being usually given in

Latin.

GOLDBACH IN MOSCOW TO EULER IN BERLIN, JUNE 7, 1742

(= May 27 O.S. 1
)

I do not believe it useless also to pay attention to those propositions which are

very likely, although there does not exist a real demonstration. Even in case they

turn out at a later time to be false, yet they may have given occasion for the dis-

covery of a new truth. The idea of Fermat, that every number 22 " -1 + 1 gives

a sequence of prime numbers, cannot be correct, as you have already shown, 2

but it would be a remarkable fact if this series were to give only numbers which

can be divided into two squares in only one way. Similarly, I also shall hazard a

conjecture: that every number which is composed of two prime numbers is an

aggregate of as many numbers as we like (including unity), till the combination

of all unities [is reached]. 3 [Goldbach adds in the margin:] After rereading this

I find that the conjecture can be demonstrated in full rigor for the case n + 1,

if it succeeds in the case for n and if n + 1 can be divided into two prime

numbers. The demonstration is very easy. It seems at any rate that every

number greater than 2 is an aggregate of three prime numbers. 4 [The text of

1 O.S. = old style (the Julian calendar, which in that period differed by eleven days from

the Gregorian calendar, N.S., which we use now).
2 See below, and also Selection 1.6
3 That is, every number n which is a sum of two primes is a sum of as many primes as one

wishes up to n. For Euler and Goldbach 1 is a prime number.
4 This is the first formulation of Goldbach’s theorem. When we begin the sequence of

primes with 2, this theorem can be formulated as follows: every even number is the sum of

two numbers that are either primes or 1. A somewhat more general formulation is that

every even number > 2 is the sum of two primes. Then every odd number > 5 is the sum
of three primes. For the history of this problem see L. E. Dickson, History of the theory of

numbers (Carnegie Institution, Washington, D.C., 2nd ed., 1934), I, 421—424 and R. C.

Archibald, “Goldbach’s theorem,” Scripta Mathematica 3 (1935), 44—50, 153—161, and p. 106

of the above-mentioned edition of the Euler-Goldbach correspondence by Juskevich and

Winter.
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Goldbach’s letter continues:] For example:

1 + 1 + 1 + 1 2 + 3

4 = 1 + 1 + 2 1 + 1+3
1+3 1 + 1 + 1 + 2

1 + 1 + 1 + 1 + 1

1 + 5

1 + 2 + 3

6 = 1 + 1 + 1 + 3

1+1+1+1+2
1 + 1 + 1 + 1 + 1 + 1

EULER IN BERLIN TO GOLDBACH IN MOSCOW, JUNE 30, 1742
(= JUNE 19 O.S.)

When all numbers included in this expression 22
"

"

1

+ 1 can be divided into two
squares in only one way, these numbers must also all be prime, which is not the
case, for all these numbers are contained in the form 4m + 1, which, whenever
it is prime, can certainly be resolved into two squares in only one way, but when
4m + 1 is not prime, it is either not resolvable into two squares, or is resolvable
in more ways than one. That 232 + 1, which is not prime, can be divided into

two squares in at least two ways I can show in the following way: I. When a and
b are resolvable into two squares, then also the product ab will be resolvable into

two squares. II. If the product ab and one of the factors a were numbers resolv-

able into two squares, then also the other factor b would be resolvable into two
squares. These theorems can be demonstrated rigorously. Now 232 + 1 ,

which
is divisible into two squares, namely 232 and 1, is divisible by 641 = 252 + 42

.

Hence the other factor, which I will call b for short, must also be a sum of two
squares. Let b = pp + qq, so that 232 + 1 = (25

2 + i2
)(pp + qq ); then

232 + 1 = (25p + 4q)
2 + (25q - ip)2

and at the same time

232 + 1 = (25p - 4q)
2 + (25q + ip)2 -

hence 232 + 1 is divisible into a sum of two squares in at least two ways. From
this, the double reduction can be found a priori, since p = 2556 and q = 409,
hence

232 + 1 = 655362 + l
2 = 6226642 + 204492

.

That every number which is resolvable into two prime numbers can be re-

solved into as many prime numbers as you like, can be illustrated and confirmed
by an observation which you have formerly communicated to me, namely that
every even number is a sum of two prime numbers. Indeed, let the proposed
number n be even; then it is a sum of two primes, and since n - 2 is also a sum
of two prime numbers, n must be a sum of three, and also four prime numbers,
and so on. If, however, n is an odd number, then it is certainly a sum of three
prime numbers, since n — 1 is a sum of two prime numbers, and can therefore
also be resolved into as many primes as you like. However, that every number
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is a sum of two primes, I consider a theorem which is quite true, although I

cannot demonstrate it.
5

12 LEGENDRE. THE RECIPROCITY THEOREM

Euler’s studies on quadratic residues and other fields in the theory of numbers were further

developed by Adrien Marie Legendre (1752-1833), a geodesist and professor of mathematics

at Paris, also known for his work on elliptic integrals and for his Elements de geometrie

(Paris, 1794). This last book, published in many editions and translations, did much to

reform secondary education in geometry. There also exists an American edition, revised by

Charles Davies, a professor at West Point (first ed., Barnes, New York, 1851).

Legendre published, without knowing Euler’s paper of 1783, but knowing, of course, much
of Euler’s earlier works, the law of reciprocity in his lengthy article, “ Recherches d’analyse

indeterminee,” in Histoire de VAcademie Royale (Paris, 1785), 465-559, Art. IV. He took

up the matter again in his Essai sur la theorie des nombres (Paris, An VI = 1797/98), 214-226,

from which the text passed without change into the Theorie des nombres (Firmin Didot,

Paris, 1830), 230-243, from which we translate here a part of the text. In the Essai Legendre

introduces the symbol which is still used to express the law of reciprocity:

(?)

(?)

= +1

= -1

if a is a quadratic residue (modp),

if a is a quadratic nonresidue (mod p),

a and p being relatively prime. For this symbol the following laws hold (p an odd prime):

= ad(p 11 (modp),

(?)“(?)
lf " E ' " ,“ l '')

(!)(?) = (!)•

(-=/) -
(1) -

where we use Gauss’s symbol = for a congruence “modulo p.”

5 It seems that Euler never tried to prove the theorem, but in a letter to Goldbach of

5/16 December 1752 he stated the additional theorem (which also seems to have been sug-

gested by Goldbach), that every even number of the form 4n -f 2 is equal to the sum of

two primes of the form 4m + 1; for example, 14 = 1 + 13, 22 = 5 + 17, 30 = 1 + 29 =
13 -f 17. See the above-mentioned edition of the correspondence, pp. 364, 365.

Goldbach’s theorem was first published, independently, by the English mathematician
Edward Waring (1734-1798) in his Meditationes analyticae (Cambridge, 1776), p. 217;

(1782), p. 379, in the form:

Every even number consists of two prime numbers and every odd number either is prime
or consists of three prime numbers.
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THEOREM CONTAINING A LAW OF RECIPROCITY WHICH EXISTS
BETWEEN TWO ARBITRARY PRIME NUMBERS

(166) We have seen that if to and n are two arbitrary prime numbers, odd and

different from each other, the concise expressions
j j

represent, the first

the remainder of m* (n ~ v divided by n, the other the remainder of n* <m “ Vl divided
by to. We have proved at the same time that these remainders can only be +

1

or - 1 . This being so defined, then there exists such a relation between the two

remainders that, if the one is known, the other is immediately deter-

mined. Here follows the general theorem which contains this relation.

Whatever may be the prime numbers to and n, if they are not both of the

form 4x + 3, then always {—\ = /—V and if they are both of the form 4x + 3,

then . These two general cases are contained in the formula

g)
_ (-i),<-**-»(=).

In order to develop the different cases of this theorem we must distinguish,
by special letters, the prime numbers of the form 4x + 1 and those of the form
4a: + 3. In the course of this demonstration we shall denote the first ones by the
letters A., a, a and the second ones by the letters /i. b, 3

.

Under these assump-
tions the theorem which we have just announced contains the eight following
cases

:

I If © = -l, then © = -i;

II If © = +i, then © = + 1;

III If
(!)

1

= then
(!)

1

= -i;

IV If
(!)

1

= -i. then
(!)

1

= + i;

V If
(!)

1

= +i, then
(!)

I

= + i;

VI If
(5 )

1

= -i. then
(!)

i

= -i;

VII If
(!)

= + 1> then © = + 1;

VIII If © = -l, then
(!)

= + i.
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DEMONSTRATION OF CASES I AND II

(167) I observe first that the equation x2 + ay2 = bz2
,
or more generally the

equation (4/ + \)x2 + (4g + 1 )y
2 — (4n + 3 )z

2
,
is impossible. Indeed, x and y

are supposed to be relative primes, and the first member is therefore always of

the form 4& + 1 or 4A: + 2, while the second member can only be of the form

4k or 4k + 3.

But the equation x2 + ay2 = bz2 would be solvable, if two integers A and p
could be found such that (A2 + a)/b and (p

2 — b)/a were integers. 1 On the other

hand, the condition that b is a divisor of A2 + a2
is = 1, or = — 1,

and the condition that a is a divisor of p
2 — b is = + 1 . Hence we could not

have at the same time
^j

= — 1 and = + 1 ;
moreover, each of these

expressions can only be + 1 ,
or — 1 ,

hence

I If m = -1, then © -

II If ©- + 1 , then = + 1 .

We may add that these two propositions are connected in the sense that the one

is only a consequence of the other; since if we take the first as = +1, then

= — 1 is impossible, because this would imply = —I, contrary to the

supposition, hence we shall have
^j

= + 1

.

DEMONSTRATION OF CASES III AND IV

(168) Since B and b are two prime numbers of the form 4m + 3, we can apply

the theorem that it is always possible to satisfy one of the equations

Bx2 — by2 = +1, Bx2 — by2 = — l.
2

Let (1) = + 1. The equation Bx2 — by2 = — 1 cannot exist, for if it were

satisfied b would be a divisor of Bx2 + 1 , or of z
2 + B; but then we would have

= l,or^j = —1, contrary to the supposition. One of the two equations

1 This was demonstrated in Art. 27, which states: “Given the equation ax 2 + by2 = cz2 ,

in which the coefficients a, b, c taken individually or in pairs, have neither a square divisor

nor a common divisor, then this equation is solvable if three integers A, /x, v can be found
such that the three quantities (a

A

2 + 6)/c, (c/x
2 — 6)/a, (cv

2 — a) lb are integers. If these

conditions are not fulfilled the equation has no solution.”
2 This was done in Art. 47.
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being thus excluded, the other one, Bx2 — by2 = +1, is necessarily satisfied.

'GrV + 1
j

From this we see that B is a divisor of by2 + 1 or of z
2 + b\ hence

or
(s)

= -*•

Let ^
(~b)

= then it: is Proved in a similar way that the equation

Bx2 - by2 = + 1 is impossible, so that the other equation Bx2 - by2 = - 1 is

satisfied, hence B is a divisor of by2 — 1 or of z2 — b, which gives = — 1.

Hence

III If (|)-+1. then (*)
= -,;

IV If
(£)

- -1, then (A) = + 1,

from which we see that and always have opposite sign.

DEMONSTRATION OF CASES V AND VI

(169) Let^j = + 1, then I say that from this it follows also that
j

= +1.

Indeed, let /J be a prime number of the form 4n + 3 which is a divisor of the

formula x2 + a; then we must have = -1, hence, according to Case I,

= — 1- Let us consider the impossible equation x2 + ay2 = A f3z; this

equation would be satisfied (no. 27) 1
if two integers A and u could be found such

that (A2 + a)/Aft and (p
2 - Afij/a were integers. The first condition is auto-

matically satisfied, since it is necessary that
hr)

= - 1
' or

(i)
= + 1

’ t0

make A2 + a divisible by A, and this is true by hypothesis, and to make A2 + a

1, which also is true.

+ 1 , but we

divisible by /3 it is necessary that = — 1 , °r =

The second condition demands that = + 1 or
j j

=

have already = — 1, hence we must have
j

= — 1. This second condition

cannot be fulfilled, since the proposed equation is impossible; hence
j

= + 1.

Hence

Vlf
(5)

- +1. then (|)-+1.
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Let now + 1, since from this it would
j

= — 1. We cannot have
j

result, because of the case that we just demonstrated, that = +1, contrary

to the supposition. Hence we shall have \ = —1. Hence

VI If g),-l, then

We have found 3 that when a and A are two prime numbers of the form 4n + 1

it is always possible to satisfy one of the equations Ax2 — ay2 = ± 1

,

x2 — Aay2 = —1. The first requires that
j

= +1 and = + 1; hence if

we have
j

= — 1 and = — 1—conditions that can always be derived

from each other, as we have shown—then the second equation will be the only

one possible, and will necessarily be true, from which there results this theorem:

“A and a being two prime numbers of the form 4n + 1, if

j

= —1, or

= —1, then the equation x2 — Aay2 = — 1 will always be possible.”

The demonstration of Cases VII and VIII follows similarly; it is shown that of the six

possibilities + 1 = ax2 - bfy
2

, ± 1 = bx2 - afyy
2

, + 1 = fix
2 - aby2

(/S of the form 4-n + 3

such that = —1) only the pair + 1 = bx2 - afiy
2

,
—1 = bx2 — afyy

2 are possible.

(171) We may remark that the first four cases are demonstrated completely,

in a way which leaves nothing to be desired. The other four suppose that when

the number a of the form 4n + 1 is given, then it is also possible to find a number

f of the form 4-n + 3 such that /3 is a divisor of the formula x2 + a, and that

hence — 1 holds.

The existence of this auxiliary theorem can immediately be proved when a is

of the form 8n + 5, because if we take x ~
1 the number x2 + a, now 1 + a, is

of the form 8n + 6 and therefore divisible by a number of the form 4n + 3,

hence by a prime number of this form, which can be taken as
ft.

When a is of the form 8n + 1, then we can observe that this form, considered

in connection with multiples of 3, can be divided into two other forms, 24n + 1

and 24n + 17. As to the latter form, it suffices to take x = 1 and x2 + a, now

3 This was done in Art. 18.
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24w + 18, is divisible by 3, so that we can take p = 3, and the condition

Lgj = 1 will be satisfied for every prime number a of the form 24m +17.

It remains to prove that for every number a of the form 24m + 1, except
unity, we can always find a prime number /S of the form 4m + 3 that will be a

divisor of z

2

+ a, or that will satisfy the condition = — 1

.

First we can prove easily, by a simple substitution, that every prime number
24m + 1 ,

which can be expressed in one of the six forms

a = 168z + 17, 41, 73, 89, 97, 145,

is such that with the corresponding values

z = 2, 1, 2, 3, 1, 3

the formula z
2 + a will be divisible by 7, so that, for all the prime numbers of

these forms the value /? = 7 will satisfy the condition m = -1.
\PI

In the same way it is shown that for a = 264,r + 17, 41, 65, ... ,
241 the numbers 2 =

4, 5, 1, 2, 3, 2, 4, 5, 3, 1 give £ = 11. Since all prime numbers of the form 4m + 1 from 73

to 1009, 15 in number, satisfy either the condition — 1, the hypoth-

esis is verified up to a = 1009, and for an infinity of larger primes a. Then Legendre tries to
prove the hypothesis in general by using the theorem that, when the prime number a is of
the form 8m + 1, then 2fy

2 + 2gyz + fz
2

is a quadratic divisor of the form t
2 + au2

,
show-

ing that prime divisors of 2fy
2 + 2gyz + fz

2 cannot all be of the form 4m + 1, hence there
must be some of the form 4m + 3, which will be divisors of x2 + a. Gauss later showed that
there are weaknesses in the argument. 4

Legendre gives many applications, including proofs of theorems that Euler had found by
induction in the Opuscula analytica (Saint Petersburg, 1783-1785), I; see Selection 1. 10.

4 The first satisfactory proof of the law of reciprocity was given by Carl Friedrich Gauss,
Disquisitiones arithmetical (Fleischer, Leipzig, 1801), Arts. 125-146, now available in an
English translation by A. A. Clarke (Yale University Press, New Haven, London, 1966),
82-100. Here, in Art. 135, we find Gauss’s formulation of the law: If p is a prime of the form
4ra + 1, + p will be a residue or nonresidue of any prime which is a residue or nonresidue
of p. If p is of the form 4m + 3, then —p will have the same property.

Gauss published five more demonstrations, and another one was found among his papers;
see his Werke, vols. I, II, also vol. X, part 2, Abh. II, 94—113. German translations of all six
proofs by E. Netto appear in Ostwald’s Klassiker

, No. 122 (Engelmann, Leipzig, 1901).



CHAPTER II ALGEBRA

We have seen that mathematical studies in late medieval Latin Europe were stimulated by

Latin translations from the Arabic. An important source of information was the treatise on

equations written by Mohammed Al-KhwarizmI (c. a.d. 825). The Latin translation of its

Arabic title, Liber algebrae et almucabala, gave the name algebra to the theory of equations

until the nineteenth century; since that time the term has been used in a much wider sense.

Al-Khwarizmi’s book dealt with linear and quadratic equations only. Sixteenth-century

Italian mathematicians added the numerical solution of cubic and biquadratic equations.

Gradually the study of equations came to involve the study of the character of the roots;

the notation changed (with Descartes) to that which we use today, and the importance of

algebra grew with its use in coordinate geometry and in the calculus with infinitesimals.

One of the most intriguing problems was the question of the number of roots of an equa-

tion, which brought in negative and imaginary numbers, and led to the conclusion, in the

work of Girard and Descartes, that an equation of degree n can have no more than n roots.

The more precise statement, that an equation of degree n always has one root, and hence

always has n roots (allowing for multiple roots), became known as the fundamental theorem

of algebra. After several attempts by D’Alembert, Euler, and others, the proof was finally

given by Gauss in 1799. In our selections we have tried to represent this trend.

There is no complete history of algebra, but many data can be found in Cantor, Oeschichte,

in J. Tropfke, Geschichte der Elementar-Mathematik (3rd ed.; De Gruyter, Berlin and

Leipzig, 1937), III, 20-151, and in Smith, History of mathematics, II, 378-521.

1 AL-KHWARIZMI. QUADRATIC EQUATIONS

Latin Europe, during and after the twelfth century, received much of its information on the

decimal position system and on linear and quadratic equations through translations of the

work of Muhammad ibn Musa Al-KhwarizmI (or Mohammed the son of Moses from

Khorezm, an area on the lower Amu Darya in the present USSR). He flourished in the time

of the Baghdad Caliph Al-Ma’mun (813-833) and probably was a member of his “House of

Wisdom,” a kind of Academy. Al-Khwarizmi’s Arithmetic, or Algoritmus de numero

Indorum, was one of the sources by which the Hindu-Arabic decimal position system was

introduced into Latin Europe. Here we shall deal with another of his books, his Algebra,

which, although it contained little that was original, was widely used, in Arabic as well as in

Latin, as a source of information on linear and quadratic equations.

55
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The title of this treatise, Hisab al-jabr w’al-muqdbala, is rendered as Liber algebrae et

almucabola in the Latin translation by Robert of Chester (c. a.d. 1140); we see how the
name “algebra” is derived from “al-jabr.” The literal meaning of the title is “The calcula-
tion of reduction and confrontation,” 1 words denoting, respectively, the transference of
negative terms from one side of the equation to the other, and the combination of like terms
on the two sides or on the same side. Mohammed’s Algebra does not use symbolic algebraic
notation: he writes out every problem in words, and so does Robert of Chester, except that
numbers such as 5, 25, and so on, appear in the Latin manuscript in a notation not very
different from ours.

We follow the English translation published by L. C. Karpinski, Robert of Chester’s Latin
translation of the Algebra of Khowarizmi (Macmillan, New York, 1915). The excerpts illus-

trate the way in which linear and quadratic equations are handled. They are divided into
two groups of three types each, namely, in modern notation, ( 1 )

ax2 = bx, ax2 = b, ax = b;

(2) ax2 + bx = c, ax2 + b = cx, ax2 = bx + c. Here a, b, c are positive integers. Moham-
med, like most authors before Viete, uses only specific numbers, writing for example,
x2 + IQ* = 39. He has only what we call positive roots.

Mohammed accompanies his algebraic solution, given in the form of a recipe, by a geo-
metric demonstration, inspired by Euclid’s Elements. This double way of treating equations
can also be followed until the time of Viete and Descartes, and seems to have been based on
the feeling that only a geometric demonstration in the tradition of the ancient Greeks had
sufficient convincing power. Euclid, in his Elements, indeed has a theory of linear and
quadratic equations, but (to our feeling) it is hidden behind the faijade of geometric theorems
and constructions (the so-called application of areas). See Heath, Euclid’s Elements, I,

383-388; II, 257-267. This same application, although somewhat simplified, appears in
Al-KhwarizmI.

An English translation of Al-Khwarizmi’s Algebra was published by F. Rosen (Oriental
Translation Fund, London, 1831). See also S. Gandz, “The sources of al-Khowarizmi’s
algebra,” Osiris 1 (1936), 263-277.

THE BOOK OF ALGEBRA AND ALMUCABOLA

CONTAINING DEMONSTRATIONS OF THE RULES OF THE EQUATIONS OF ALGEBRA

. . . Furthermore I discovered that the numbers of restoration and opposition
are composed of these three kinds: namely, roots, squares, and numbers. 2 How-
ever, number alone is connected neither with roots nor with squares by any
ratio. Of these, then, the root is anything composed of units which can be multi-
plied by itself, or any number greater than unity multiplied by itself: or that
which is found to be diminished below unity when multiplied by itself. The
square is that which results from the multiplication of a root by itself.

1 Jabr is the setting of a bone, hence reduction or restoration; muqabala is confrontation,
opposition, face-to-face (explanation by Professor E. S. Kennedy).

2 The term “roots”
(radices

)

stands for multiples of the unknown, our x; the term
squares

(substantiae )
stands for multiples of our x2

; “numbers” (
numeri

)

are constants.
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Of these three forms, then, two may be equal to each other, as for example:

Squares equal to roots,

Squares equal to numbers, and

Roots equal to numbers. 3

CHAPTER I. CONCERNING SQUARES EQUAL TO ROOTS 4

The following is an example of squares equal to roots: a square is equal to 5

roots. The root of the square then is 5, and 25 forms its square which, of course,

equals five of its roots.

Another example: the third part of a square equals four roots. Then the root

of the square is 12 and 144 designates its square. And similarly, five squares

equal 10 roots. Therefore one square equals two roots and the root of the square

is 2. Four represents the square.

In the same manner, then, that which involves more than one square, or is

less than one, is reduced to one square. Likewise you perform the same operation

upon the roots which accompany the squares.

CHAPTER II. CONCERNING SQUARES EQUAL TO NUMBERS

Squares equal to numbers are illustrated in the following manner: a square is

equal to nine. Then nine measures the square of which three represents one root.

Whether there are many or few squares, they will have to be reduced in the

same manner to the form of one square. That is to say, if there are two or three or

four squares, or even more, the equation formed by them with their roots is to

be reduced to the form of one square with its root. Further, if there be less than

one square, that is, if a third or a fourth or a fifth part of a square or root is

proposed, this is treated in the same manner.

For example, five squares equal 80. Therefore one square equals the fifth part

of the number 80 which, of course, is 16. Or, to take another example, half of a

square equals 18. This square therefore equals 36. In like manner all squares,

however many, are reduced to one square, or what is less than one is reduced to

one square. The same operation must be performed upon the numbers which

accompany the squares.

CHAPTER III. CONCERNING ROOTS EQUAL TO NUMBERS

The following is an example of roots equal to numbers: a root is equal to 3.

Therefore nine is the square of this root.

Another example: four roots equal 20. Therefore one root of this square is 5.

Still another example: half a root is equal to ten. The whole root therefore

equals 20, of which, of course, 400 represents the square.

Therefore roots and squares and pure numbers are, as we have shown, dis-

tinguished from one another. Whence also from these three kinds which we have

3 In our notation, x2 = ax, x2 = b, x = c.

4 Latin: de substantiis numeros coaequantibus

.

The examples are x2 = 5x, %x2 — 4x,

5x2 = 10a:.
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just explained, three distinct types of equations are formed involving three
elements, as

A square and roots equal to numbers,

A square and numbers equal to roots, and
Roots and numbers equal to a square.

CHAPTER rv. CONCERNING SQUARES AND ROOTS EQUAL TO NUMBERS

The following is an example of squares and roots equal to numbers: a square and
10 roots are equal to 39 units. 5 The question therefore in this type of equation is

about as follows: what is the square which combined with ten of its roots will

give a sum total of 39 ? The manner of solving this type of equation is to take
one-half of the roots just mentioned. Now the roots in the problem before us are
10. Therefore take 5, which multiplied by itself gives 25, an amount which you
add to 39, giving 64. Having taken then the square root of this which is 8, sub-

tract from it the half of the roots, 5, leaving 3. The number three therefore

represents one root of this square, which itself, of course, is 9. Nine therefore

gives that square.

Similarly, however many squares are proposed all are to be reduced to one
square. Similarly also you may reduce whatever numbers or roots accompany
them in the same way in which you have reduced the squares.

The following is an example of this reduction: two squares and ten roots equal
48 units. The question therefore in this type of equation is something like this:

what are the two squares which when combined are such that if ten roots of

them are added, the sum total equals 48 ? First of all it is necessary that the
two squares be reduced to one. But since one square is the half of two, it is at

once evident that you should divide by two all the given terms in this problem.
This gives a square and 5 roots equal to 24 units. The meaning of this is about
as follows: what is the square which amounts to 24 when you add to it 5 of its

roots ? At the outset it is necessary, recalling the rule above given, that you take
one-half of the roots. This gives two and one-half which multiplied by itself

gives 6|. Add this to 24, giving 30 j. Take then of this total the square root, which
is, of course, From this subtract half of the roots, 2 \, leaving 3, which ex-

presses one root of the square, which itself is 9.

CHAPTER VI. GEOMETRICAL DEMONSTRATIONS 6

We have said enough, says Al-Khowarizmi, so far as numbers are concerned,
about the six types of equations. Now, however, it is necessary that we should

5 This example, x2
-f- lOx — 39, answer x = 3, “runs,” as Karpinski notices in his

introduction to this translation, “like a thread of gold through the algebras for several
centuries, appearing in the algebras of Abu Kamil, Al-Karkhi and Omar al-Khayyami,
and frequently in the works of Christian writers,” and it still graces our present algebra
texts. The solution of this type, x2 + ax — b, is, as we can verify, based on the formula
x = V (a/2) 2 + b — a/2.

6 For these geometric demonstrations we must go back, as said, to Euclid’s Elements
(Book VI, Prop. 28, 29; see also Book II, Prop. 5, 6). See also on this subject the introduc-
tion to the Principal works of Simon Stevin, vol. IIB (Swets-Zeitlinger, Amsterdam, 1958)
464-467.
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demonstrate geometrically the truth of the same problems which we have

explained in numbers. Therefore our first proposition is this, that a square and

10 roots equal 39 units.

The proof is that we construct [Fig. 1] a square of unknown sides, and let this

square figure represent the square (second power of the unknown) which to-

gether with its root you wish to find. Let the square, then, be ab, of which any

side represents one root. When we multiply any side of this by a number (or

numbers) it is evident that that which results from the multiplication will be a

number of roots equal to the root of the same number (of the square). Since then

ten roots were proposed with the square, we take a fourth part of the number
ten and apply to each side of the square an area of equidistant sides, of which

the length should be the same as the length of the square first described and the

breadth 2\, which is a fourth part of 10. Therefore four areas of equidistant sides

are applied to the first square, ab. Of each of these the length is the length of one

root of the square ab and also the breadth of each is 2|, as we have just said.

a

c

t d

e

b

These now are the areas c, d, e, f. Therefore it follows from what we have said

that there will be four areas having sides of unequal length, which also are

regarded as unknown. The size of the areas in each of the four corners, which is

found by multiplying 2| by 2|, completes that which is lacking in the larger or

whole area. Whence it is that we complete the drawing of the larger area by the

addition of the four products, each 2 J by 2J; the whole of this multiplication

gives 25.

And now it is evident that the first square figure, which represents the square

of the unknown [x2], and the four surrounding areas [10a;] make 39. When we
add 25 to this, that is, the four smaller squares which indeed are placed at the

four angles of the square ab, the drawing of the larger square, called GH, is

completed [Fig. 2], Whence also the sum total of this is 64, of which 8 is the root,

and by this is designated one side of the completed figure. Therefore when we
subtract from eight twice the fourth part of 10, which is placed at the extremities

of the larger square GH, there will remain but 3. Five being subtracted from 8,

3 necessarily remains, which is equal to one side of the first square ab.
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This three then expresses one root of the square figure, that is, one root of the
proposed square of the unknown, and 9 the square itself. Hence we take half of

ten and multiply this by itself. We then add the whole product of the multiplica-

tion to 39, that the drawing of the larger square GH may be completed; for the
lack of the four corners rendered incomplete the drawing of the whole of this

square. Now it is evident that the fourth part of any number multiplied by itself

and then multiplied by four gives the same number as half of the number
multiplied by itself. Therefore if half of the root is multiplied by itself, the sum
total of this multiplication will wipe out, equal, or cancel the multiplication of

the fourth part by itself and then by four.

Fig. 2

G

c

f

_Q

O

d

e

H

The remainder of the treatise deals with problems that can be reduced to one of the six

types, for example, how to divide 10 into two parts in such a way that the sum of the prod-
ucts obtained by multiplying each part by itself is equal to 58: x2 + (10 - x) 2 = 58,

x = 3, x = 7. This is followed by a section on problems of inheritance.

2 CHUQUET. THE TRIPARTY

Nicolas Chuquet of Paris worked in Lyons, where he may have practiced medicine. His
extensive work, Le Triparty en la science des nombres du Maistre Nicolas Chuquet Parisien

(1484), so called because the book is divided into three sections (computation with rational

numbers, computation with irrational numbers, and theory of equations), was not printed
until 1880, but had considerable influence in manuscript. The book shows that in the mer-
cantile city of Lyons a good deal of arithmetic and algebra was known, comparable to that
known in leading cities of Italy and Germany. It can be studied in the Bollettino di Biblio-

grafia e di Storia delle Scienze Matematiche e Fisiche 13 (1880), 593-814, edited by B.
Boncompagni from a manuscript in the Bibliotheque Nationale in Paris.

The third part has become known because of its notation for powers, which has a modern
touch, since an exponential notation replaces the common Renaissance, so-called “cossist”
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notation, which uses special hieroglyphs for what we write (with Descartes) as x, x2
,
x3

,

x*, . . . (see, for example, the reproduced page of Recorde in Smith, History of mathematics,

II. 412; also 427-431). In Chuquet we find 12 1 for our 12a;, 12 2 for 12a;
2

,
123 for 12a;

3
,
and

so on, and this consistently, so that 12° = 12 and 12

“

1 = 12/a;
(
— 1 is written l.m); these

exponents are called “denominations ” (this use of negative numbers was quite unusual in

those days). Chuquet then shows that xm -xn = xm + n
. How Chuquet does it we see from the

following translation of a part of the fourt h chapter (pp. 739-740, 746)

:

How to multiply a difference of number [une dijferance de nombre] by itself or

by another similar or dissimilar to it.

Example. He who multiplies .12? by .12? obtains .144., then he who adds

.0. to .0. obtains .0.; hence this multiplication gives .144.. 1

This means 12a;°-12a;0 = 144a;0 + 0 = 144a;0 .

Then he who multiplies .12? by .10? has first to multiply .12. by .10.,

which gives . 120.
,
and then .0. must be added to .2. . Thus the multiplication

will give 120? . By the same reasoning he who multiplies ,5i by .8? obtains the

multiplication . 40?

.

He who also wants to multiply . 12? by . 10? must first multiply .12. by . 10.

,

obtaining . 120.
,
then must add the denominations together, which are .3. and

. 5
. ,
giving . 8 . . Hence the multiplication gives . 120?.

Also he who wants to multiply .8 1 by .7 1 ™ obtains as multiplication .56.,

then he who adds the denominations together will take 1
. p with .l.m and

obtains .0.

.

Here he obtains the multiplication .56?. 2

Similarly, he who would multiply .8? by ,7 l m will find it convenient first to

multiply . 8 . by . 7 . . He obtains . 56
.

,

then he must add the denominations, and
will take 3

. p with .l.m and obtain .2.

.

Hence the multiplication gives . 56?

and in this way we must understand other problems.

Then follows a list of powers of 2 with their denominations:

number 1 2 4 8 16 32 64 1048576

denomination 0 1 2 3 4 5 6 20

1 Qui multiplie .12? par .12? montant .144., puis qui adiouste .0. avec .0. monte .0..

Ainsi monte ceste multiplicacion . 144.

.

2
. 1 -p with . 1 .ffi means +1 4- ( — 1).
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ON EQUIPOLLENCES OF NUMBERS

. . . And in order better to understand what has been said above about this art

and style of abbreviating and equating its terms [parties] and of bringing them

back to two simple terms as well as one can do it, we shall give here some

examples of which the first is as follows—I shall abbreviate:

R 2 4?p.4 1 p.21p. 1 equal to . 100. 3

First I take away .2 \p. 1 from both terms and there remains to me R 2
4?/3 .

4

1

in one term and 99 . rh

.

21 in the other. And now that one of the terms is a second

root it is convenient to multiply it by itself and we obtain . 4?.l.p.4 1 in this

term. And similarly we must multiply .99.rn.21 by itself and we obtain

9801

.

m . 3961p.4? in the other term. Now we still must abbreviate these terms

by taking away .4? from the one and the other term. And then add .3961 to

each of them. In this way we shall have .4001 in one term and .9801 . in the

other term. 4

After more of this there follows a theory of quadratic equations, in which negative roots

are rejected. Chuquet has negative but no fractional exponents. Those we meet, even before

Chuquet, in the Algorismus proportionum by Nicole Oresme (c. 1323-1382; see Selection

III. 1 ). Here we find a notation for \,
p 1.

1 .2.

for 1|,
p 1

1 3

for li
p 2

2 4
for 2|,

and
V 1-

1 2 .

4 for 4 1
*. The p stands for proportio. The dots (

. )
are sometimes present, some-

times absent in the manuscript text reproduced by F. Cajori, History of mathematical

notations (Open Court, Chicago, 1928), I, 92. A variant 4 is found in Cantor,

Oeschichte, II, 121. On the Algorismus see De proportionibus proportionum and Ad pauca

respicientes, ed. E. Grant (University of Wisconsin Press, Madison, 1966), 65-68.

3 CARDAN. ON CUBIC EQUATIONS

The discovery of the numerical solutions of equations of the third degree at the University

of Bologna in the early years of the sixteenth century was an important step in the develop-

ment of algebra. It attracted wide attention, and was discussed in many public disputa-

tions. The textbook that laid the whole method open to public inspection was the Ars magna
(Nuremberg, 1545) by the physician, humanist, mathematician, and scientist-in-general

Gerolamo Cardano, or Hieronymus Cardanus, or, in English, Jerome Cardan (1501-1576).

Here he stated that Scipio del Ferro at Bologna had discovered the method of solving

equations of the type x3 + px = q. Nicolo Tartaglia (c. 1499-1557) had also discovered this,

3 V 4a;
2 + ix + 2x + 1 = 100.

1 Vix2 + ix = 99 - 2x; 4x2 + 4x = 9801 - 396a; + 4a;
2

; 4a: = 9801 - 396a;; 400x = 9801.
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and then found a method of solving equations of the type x3 = px + q, x3 + q = px.

Cardan obtained the solutions from Tartaglia (breaking a pledge of secrecy) and the method

of solving cubic equations numerically has ever since been called after Cardan. The Ars

magna was for many decades the best-known book on algebra, studied by all who were

interested, and it lost this position only when Descartes introduced his new methods.

We quote here an English translation of a part of Chapter XI (pp. 29r-30r
), dealing with

the equation x3 + px = q, or in particular x3 + 6x = 20. It is based, as is also the text of

Selection II.4, on the translation published in Smith, Source booh, 204-212. Cardan’s

notation is quite different from ours, and he expresses the equation by saying: “A cube and

unknowns are equal to a number” (Cubus et res aequales numero). For 'unknown,” our x,

he has, like most of his contemporaries, the Latin term res, Italian cosa, literally, “thing.”

A cube is conceived as a solid body. By “number” is meant a numerical coefficient, in this

case 20.

The book contains solutions for quadratics and for many types of cubes and biquadratics.

The coefficients are always positive and specific numbers. Cardan also teaches some properties

of equations and their roots. For instance (in Chapter XVII) we read that the equation

x3 + 1 Ox = P>x
2 + 4 has three roots, namely 2, 2 + V2, 2 — V2, and Cardan sees that

their sum adds up to the coefficient of x2
. Cardan is puzzled when imaginaries appear, and

keeps them out of the Ars magna except in one case (see below), where he meets them in

the solution of a quadratic equation. The casus irreducibilis, where a real root appears as a

sum of the cube roots of two imaginaries (as in x3 = 15a; + 4, where x = 4, but the Cardan

formula gives a; = ''v
/
2 + V— 121 4- ^2 — V — 121) is discussed in the works of Bom belli

(1572) and Viete (1591).

On Cardan see 0. Ore, Cardano, the gambling scholar (Princeton University Press, Prince-

ton, New Jersey, 1953). On the Ars magna see J. F. Scott, A history of mathematics (Taylor

and Francis, London, 1958), 87-92. On Italian mathematicians of the Renaissance, see

further E. Bortolotti, Studi e ricerche sulla storia della matematica in Italia nei secoli XVI e

XVII (Zanichelli, Bologna, 1928).

CONCERNING A CUBE AND UNKNOWNS EQUAL TO A NUMBER

Chapter XI

Scipio del Ferro of Bologna about thirty years ago invented [the method set

forth in] this chapter, [and] communicated it to Antonio Maria Florido of

Venice, who when he once engaged in a contest with Nicolo Tartaglia of Brescia

announced that Nicolo also invented it: and he [Nicolo] communicated it to us

when we asked for it, but suppressed the demonstration. 1 With this aid we

sought the demonstration, and found it, though with great difficulty, in the

manner which we set out in the following.

Demonstration. For example, let the cube of GH and six times the side GH be

1 Tartaglia and Cardan met in Milan during 1539, after which Tartaglia gave Cardan his

method in obscure verses, which he later clarified. Cardan soon mastered the method and

knew how to apply it independently. The verses begin as follows:

Quando che’l cubo con le cose appresso When x3 together with px
Se agguaglia a qualche numero discreto Are equal to a q
Trovan dui altri, differenti in esso. . . Then take u and v, u 5^ v. . .
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equal to 20. 2 I take [Fig. 1] two cubes AE and CL whose difference shall be 20,

so that the product of the side AC by the side CK shall be 2, i.e., a third of the
number of unknowns, and I lay offCB equal to CK

;
then I say that if it is done

thus, the remaining line AB is equal to GH and therefore to the value of the
unknown (for it was supposed of GH that it was so). Therefore I complete, after

the manner of the first theorem of the 6th chapter of this book, 3 the solids DA,
DC, DE, DF, so that we understand by DC the cube of BC, by DF the cube of
AB, by DA three times CB times the square of AB, by DE three times AB
times the square of BC. Since therefore from AC times CK the result is 2. from
3 times AC times CK will result 6, the number of unknowns, and therefore from
AB times 3 AC times CK there results 6 unknowns AB, or 6 times AB, so that

3 times the product of AB, BC, and AC is 6 times AB. But the difference of the
cube AC from the cube CK, and likewise from the cube BC, equal to it by
hypothesis, is 20; and from the first theorem of the 6th chapter, this is the sum
of the solids DA, DE, and DF, so that these three solids make 20. But taking
BC minus, the cube of AB is equal to the cube of AC and 3 times AC into the
square of CB and minus the cube of BC and minus 3 times BC into the square
of AC. By the demonstration, the difference between 3 times CB times the

2 We can follow the reasoning more easily if we take the equation as x3 + px = q, p = 6,

q = 20, and OH = x, AC = u, CK = v, so that the cube AE = u3
, DC = v3 . Then u and v

are selected so that u3 - v3 = q = 20, uv = p/3 = 2. Then we must prove that AB =
u v — OH = x. For this purpose wo use for AE = u3 the expression for the third power
of the binomial

( the first theorem of the 6th chapter,” this theorem being stated as a
property of solids):

u3 = [(u - v) + vf = (u - v) 3 + 3v(u - v) 2 + 3v2(u - v) + v3

so that

u3 - v3 - (u - v) 3 + 3v(u - v)2 + 3(« - v)v2 = (u - v)3 + 3uv(u - v),

or

u3 — v3 = q = (u — v)3 + p(u — v).

Hence, since q = x3 + px (here Cardan quotes theorems in Euclid’s Elements, book XI,
dealing with the equality of parallelepipeds; the numbering of the propositions differs in
ancient editions), we see that x = u — v, or AB = OH.

3 Cardan writes in Chapter VI that after Tartaglia had handed over to him his rule he
“thought that this would be the royal road to pursue in all cases.” And so he established
three theorems; in our notation they are:

(a) If a = u + v, then a3 = u3 + v3 + 3{u2v + uv2 );

(b) u3 + 3uv2 > v3 + 3u2v, the difference being
(u — v)3(u > v);

(c) By Euclid’s theory of proportions,

u3 + v3 u3 — u2v + uv2

3uv2 + 3vu2 3vu2
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square of AC, and 3 times AC times the square of BC, is [3 times] the product of

AB, BC, and AC. Therefore since this, as has been shown, is equal to 6 times

AB, adding 6 times AB to that which results from AC into 3 times the square

of BC there results 3 times BC times the square of AC, since BC is minus. Now
it has been shown that the product of CB i into 3 times the square of AC is

minus; and the remainder which is equal to that is plus, hence 3 times CB into

the square of AC and 3 times AC into the square of CB and 6 times AB make
nothing. Accordingly, by common sense, the difference between the cubes AC
and BC is as much as the totality of the cube of AC, and 3 times AC into the

square of CB, and 3 times CB into the square of AC (minus), and the cube of

BC (minus), and 6 times AB. This therefore is 20, since the difference of the

cubes AC and CB was 20. Moreover, by the second theorem of the 6th chapter,

putting BC minus, the cube of AB will be equal to the cube of AC and 3 times

AC into the square of BC minus the cube of BC and minus 3 times BC into the

square of AC. Therefore the cube of AB, with 6 times AB, by common sense,

since it is equal to the cube of AC and 3 times AC into the square of CB, and

minus 3 times CB into the square of AC, and minus the cube of CB and 6 times

AB, which is now equal to 20, as has been shown, will also be equal to 20. Since

therefore the cube of AB and 6 times AB will equal 20, and the cube of GH,

together with 6 times GH, will equal 20, by common sense and from what has

been said in the 35th and 31st of the 11th Book of the Elements, GH will be

equal to AB, therefore GH is the difference of AC and CB. But AC and CB, or

AC and CK, are numbers or lines containing an area equal to a third part of the

number of unknowns whose cubes differ by the number in the equation, where-

fore we have the

RULE 5

Cube the third part of the number of unknowns, to which you add the square of

half the number of the equation, and take the root of the whole, that is, the

4 Here begins the text of p. 30r of the Ars magna, reproduced in Fig. 2.

5 This rule is known as Cardan’s rule for the case x3 + px = q. In our notation:

Since u3 — v3 = q = 20, uv = p/3, we can find x = u — v by solving a quadratic

equation. Since v = p/3u, u3 — (p/3w)3 = q, u6 — qu3 — (p/3)
3 = «6 — 20m3 — p = 0, we

find

u3 =
|
± + (0

= 10 ± VlOO + 8 = 10 ± Vl08

Similarly:

Cardan now states in the “ Rule ”
: for u3 take 10 + V 108 (this is the binomial ), for v3 take

— 10 + V 108 (this is the apotome; both expressions are from Euclid’s Elements, Book X), so

that

= ^lO + V 108 - ^-10 + V 108.

In Cardan’s notation (see Fig. 2, fourth line from the bottom):

V: cub: 108 p: 10 m: V: cubica 108 m: 10;

here p stands for “piu,” plus, m for “meno,” minus, and R for “radix.” Cardan does not

use the signs 4- ,
—

,
although they were already in use at the time.
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square root, which you will use, in the one case adding the half of the number

which you just multiplied by itself, in the other case subtracting the same half,

and you will have a binomial and apotome respectively; then subtract the cube

root of the apotome from the cube root of the binomial, and the remainder from

this is the value of the unknown. In the example, the cube and 6 unknowns

equals 20; raise 2, the 3rd part of 6, to the cube, that makes 8; multiply 10, half

the number, by itself, that makes 100; add 100 and 8, that makes 108; take the

root, which is V 108, and use this, in the first place adding 10, half the number,

and in the second place subtracting the same amount, and you will have the

binomial V108 + 10, and the apotome V108 — 10; take the cube root of these

and subtract that of the apotome from that of the binomial, and you will have

the value of the unknown ^V108 + 10 — ^V108 — 10.

Cardan continues to discuss one case after another. Here are, in our notation, the head-

ings of the different chapters

:

11. X3 + ax = b 20. x3 = ax2 + bx + c

12. X3 = ax + b 21. x3 + a = bx2 + cx

13. X3 + a = bx 22. x3 + ax + b = cx2

14. X3 = ax2 + b 23. x3 + ax2 + b = cx

15. X3 + ax2 = b 24. On the 44 derivative

16. X3 + a = bx2 equations (for example,

17. X3 + ax2 + bx — c xe + 6x4 = 100)

18. X3 + ax = bx2 + c 25. On imperfect and par-

19. X3 + ax2 = bx + c ticular rules.

Chapter 26 and later chapters also deal with biquadratic equations.

Many examples follow. We occasionally meet negative numbers, which Cardan calls

“fictitious” (fidae). Another element enters in the following example, taken from Chapter

37, “On the rule of postulating a negative,” which involves imaginaries. We substitute

modern notation.

I will give as an example: 6 If some one says to you, divide 10 into two parts,

one of which multiplied into the other shall produce 30 or 40, it is evident that

this case or question is impossible. Nevertheless, we shall solve it in this fashion.

Let us divide 10 into equal parts and 5 will be its half. Multiplied by itself, this

yields 25. From 25 subtract the product itself, that is 40, which, as I taught you
in the chapter on operations in the sixth book, leaves a remainder —15. The
root of this added to and then subtracted from 5 gives the parts which multiplied

together will produce 40. These, therefore, are 5 + V — 15 and 5 — V — 15.

Here begins the text of p. 66r of the Ars magna, reproduced in Fig. 3.
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Proof. That the true significance of this rule may be made clear, let the line

AB [see Fig. 3], which is called 10, be the line which is to be divided into two
parts whose rectangle is to be 40. Now since 40 is the quadruple of 10,

we wish four times the whole of AB. Therefore, make AD the square on AC,
the half of AB. From AD subtract four times AB. If there is a remainder, its

root should be added to and subtracted from AC thus showing the parts [into

which AB was to be divided]. Even when such a residue is negative, you will

nevertheless imagine V - 15 to be the difference between AD and the quadruple
ofAB which you should add to and subtract from AC to find what was sought.

That is 5 + V25 - 40 and 5 - V25 - 40, or 5 + V-15 and 5 - V-15.
Dismissing mental tortures, and multiplying 5 + V-15 by 5 — V-15, we
obtain 25 — ( — 15) which is + 15. Therefore the product is 40. However, the

nature of HD is not the same as that of 40 or HD because a surface is far from
a number or a line. This, however, is closest to this quantity, which is truly

puzzling since operations may not be performed with it as with a pure negative

number or with other numbers. 7 Nor can we find it by adding the square of

half the number to the product number and take away and add from the root

of the sum half of the dividend. For example, in the case of dividing 10 into

two parts whose product is 40, you add 25, the square of one half of 10, to 40
making 65. From the root of this subtract 5 and then add 5 and according to

similar reasoning you will have V65 + 5 and V65 — 5. But these numbers
differ by 10, and do not make 10 jointly. 8 This subtility results from arithmetic

the final point of which is, as I have said, as subtile as it is useless.

4 FERRARI. THE BIQUADRATIC EQUATION

Cardan’s Ars magna not only presented the numerical solution of cubic equations, but—to

the surprise of his contemporaries—also showed how a biquadratic equation can be solved.

This was accomplished by a young friend of Cardan’s, Ludovico Ferrari (1522-1565), who
tried his talents on the equation xi + ()x

2 + 36 = 60a;. The method has since been known
as the method of Ferrari.

The text begins with a square AD, of which the side HD is supposed to be itself a square,

say HD = x2
. Added to HD is a part BC = p = 3. Then by means of another addition

CG = y the square AH is obtained. Figure 1 shows that the area LNM = y
2 + 2yp,

where MD = BC = p.

1 The sentence is; quae vere est sophistica, quoniam per earn, non ut in puro m : nec in aliis,

operationes exercere licet, nec venari quid sit. T. R. Witmer (in a translation of the Ars magna
to be published by the M.I.T. Press) translates this: “This truly is sophisticated, since
through it one can (as one cannot in the case of a pure negative) perform operations and
pursue a will-o’-the wisp.”

8 Since x x + x2 = 10, x xx2 = 40, the equation to be solved is x2 — 10* + 40 = 0, hence
x = 5 + V25 — 40. Cardan, puzzled by this “sophisticated subtility,” asks whether per-

haps x = ± 5 + V25 + 40 will do, but then xt — x2 = 10 and not x1 + x2 .
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What is shown then is that, if an equation of the form xi + px

2

+ qx + r = 0 is given,

it can be written

(A) (x2 + p + y)
2 = p2 + px2 — qx — r + 2y(x

2 + p) + y
2

= *2{p + 2y) - qx + (p
2 - r + 2py + y

2
),

so that the problem is reduced to the finding of a value of y that makes the right-hand mem-
ber a square in x. This leads to an equation of the third degree in y:

4(p + 2y){p
2 - r + 2py + y

2
)
- q

2 = 0.

Solution of this equation in y leads to the solution of the original biquadratic equation.

Fig. l

N H

M F

D

A B C G

If therefore AD [Fig. 1] is made 1 fourth power 1 and CD and DE are made
3 squares, and DF is made 9, BA will necessarily be a square and BC will

necessarily be 3. Since we wish to add some squares to DC and DE, let these

[additions] be [the rectangles] CL and KM. Then in order to complete the square

it will be necessary to add the area LNM. This has been shown to consist of the

square on GC, which is half the number of [added] squares, since CL is the area

[made] from [the product of] GC times A B, where AS is a square, AD having

been assumed to be a fourth power. But FL and MN are each equal to GC times

CB, by Euclid I, 42, 2 and hence the area LMN, which is the number to be

added, is a sum composed of the product of GC into twice CB, that is, into the

number of squares which was 6, and GC into itself, which is the number of

squares to be added. This is our proof [of the possibility of a solution].

This having been completed, you will always reduce the part containing the

fourth power to a root, viz, by adding enough to each side so that the fourth

power with the square and number may have a root. This is easy when you take

half the number of the squares as the root of the number; and you will at the

1 Cardan writes “square-square,” quadratum quadratum (q
d
q
i
), hence x4

.

2 In Heath’s edition of the Elements (see Selection II. 1) it is I, 43.
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same time make the extreme terms on both sides plus, for otherwise the tri-

nomial or binomial changed to a trinomial will necessarily fail to have a root.

Having done this, you will add enough squares and a number to the one side,

by the third rule, 3 so that the same being added to the other side (in which the

unknowns were) will make a trinomial having a square root by assumption; and

you will have a number of squares and a number to be added to each side, after

which you will extract the square root of each side, which will be, on the one

side, 1 square plus a number (or minus a number) and, on the other side, 1

unknown or more, plus a number (or minus a number; or a number minus

unknowns), wherefore by the fifth chapter of this book you will have what has

been proposed.

question v 4

Example. Divide 10 into 3 parts in continued proportion such that the first

multiplied by the second gives 6 as product. This problem was proposed by

Johannes Colla, 5 who said he could not solve it. I nevertheless said I could solve

it, but did not know how until Ferrari found this solution. Put then 1 unknown
as the middle number, then the first will be 6/1 unknown, and the third will be

of a cube. Hence these together will be equal to 10. Multiplying all by 6

unknowns we shall have 60 unknowns equal to one fourth power plus 6 squares

plus 36. 6 Add, according to the 5th rule, 6 squares to each side, and you will

have 1 fourth power plus 12 squares plus 36, equal to 6 squares plus 60 un-

knowns; for if equals are added to equals, the totals are equal. But 1 fourth

power plus 12 squares plus 36 has a root, which is 1 square plus 6. If 6 squares

plus 60 unknowns also had a root, we should have the job done; but they do not

have; hence we must add so many squares and a number to each side, that on

the one side there may remain a trinomial having a root, while on the other

side it should be made so. Let therefore a number of squares 7 be an unknown
and since, as you see in the figure . . . CL and M

K

are formed from twice GC
into AB, and GC is an unknown, I will always take the number of squares to be

added as 2 unknowns, that is, twice GC; and since the number to be added to

36 is LNM it therefore is the square of GC together with the product of twice

3 Rule given earlier in the book.
4 The problem is to find y :x — x :z, x + y + z = 10, xy = 6, which leads to

- + x + i x3 = 10.
x 6

This is written

x4 + 12x2 + 36 = 6x2 + 60x, or (x2 + 6)
2 = 6x2 + 60x.

This is changed into (x2 + 6 + y)
2 = 6x2 + 60x -f 2y(x2 + 6) + y

2
. The right-hand

member is a square if

2y
3 + 30y

2 + 72y = 900, y
3 + 15y

2 + 36y = 450,

or y
3 + (12 + r)j/

2 + 36y = H*”)
2

- This is a cubic equation, already discussed by
Cardan.

5 Zuasse de Tonini da Coi, or Johannes Colla, was a mathematician who often conferred
with Tartaglia and Cardan.

e This means x 4 + 6x2 + 36 = 60x.
7 Here begins the text of p. 74T

, reproduced in Fig. 2.
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GC into CB or of GC into twice CB, which is 12, the number of the squares in

the original equation. I will therefore always multiply the unknown, half the

number of squares to be added, into the number of squares in the original

equation and into itself and this will make 1 square plus 12 unknowns to be

added on each side, and also 2 unknowns for the number of the squares. We shall

therefore have again, by common sense, the quantities written below equal to

each other; and each side will have a root, the first, by the third rule, 3 but the

second quantity, by an assumption [this is Eq. (A) above]. Therefore the first

part of the trinomial multiplied by the third makes the square of half the second

part of the trinomial. Thus from half the second part multiplied by itself there

results 900, a square, and from the first [multiplied] into the third there result

2 cubes plus 30 squares plus 72 unknowns. Likewise, this may be reduced, since

equals divided by equals produce equals, as 2 cubes plus 30 squares plus 72

unknowns equals 900, therefore 1 cube plus 15 squares plus 36 unknowns equals

450.

It is therefore sufficient for the reduction to the rule, if we have always 1 cube

plus the number of the former squares, with a fourth of it added to it plus such a

multiple of the assumed quantity as the first number of the equation indicates;

so that if we had 1 fourth power plus 12 squares plus 36 equals 6 squares plus

60 unknowns we should have 1 cube plus 15 squares plus 36 unknowns equal to

450, half the square of half the number of unknowns. And if we had 1 fourth

power plus 16 squares plus 64 equal to 80 unknowns we should have 1 cube

plus 20 squares plus 64 unknowns equal to 800. And if we had 1 fourth

power plus 20 squares plus 100 equal to 80 unknowns we should have 1 cube

plus 25 squares plus 100 unknowns equal to 800. This being understood, in the

former example we had 1 cube plus 15 squares plus 36 unknowns equal to 450;

therefore the value of the unknown, by the 17th chapter, 8
is

%
.
2871 + V80449J + %287\

- ¥80449]- - 5.
9

This then is the number of squares which is to be doubled and added to each side

(since we assumed 2 unknowns to be added), and the number to be added to each

side, by the demonstration, is the square of this, with the product of this by 12,

the number of squares.

Cardan continues to analyze this method and gives several more examples, for instance

x

4

+ 4x + 8 = 10x2
,
which he reduces to y

3 + 30 = 2y
2 + 15y. The book ends, at the

conclusion of the 40th chapter, with the exclamation: “Written in five years, may it last

as many thousands !

”

8 Cardan here teaches that an equation of the form x3 + px2 + qx = r can be reduced to

an equation without a term in x2 by the substitution y = x + p/ 3.

9 T. R. Witmer has observed that this should be

V 190 + V 33,903 + ^190 - V33.903 - 5

(see note 7, previous selection).
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De Arithmetica Lib. x. 74
toium 1 poiido,& quia,utuidesin figura tertix regulx ,cl & mi,
fiunt cx duplo g c in a c ,Sc g c eft 1 pofitio

,
ponam numerum qua.

dratorum addendorum Temper 2 pofitiones,id eft duplu g c,& quia

numerus addendus ad } 6 , eft l n m ,& ideo quadratum g c aim eo

quod fit cx g c duplicato in c E,feu ex G c in duplum c B,&eft 1 2,nu

merus quadracorum priorum,ducam igitur 1 pofitionem.dimidium

numeri qdratorum additoru,femper in numerum qdratoru prioru,

&infe,&ficnt 1 qdratum p:r 2 poiitionibus addenda ex alia parte.

Sc etiam 2 pofitiones pro numero quadratorum, habemus igitur itc*

rum ex communi animi fententia
,
quantitates infrafcriptas , inuicem

xqua!cs,& utracp habent radicem,prima ex regula tertia, fed fecun.

da quantitas ex luppo* _

,

-
1 qd'qd.p: 2 pof.pl 1 2. qd* p: 1 qd.p: 1

2

pof. additi numeri p: $6 xqualia.

2 pof. 6 qdratoru,p:do pof.p: 1 qd. p: 1

2

pof. numeri additi.

fitodgitur du<fta prima

parte trinomp in ter*

tiam,fit quadratum di*

midix partis fecundx

trinomrj,quia igitur ex dimidio fecundx in fe,fiunt c>oo,quadrata,8£

ex prima in tertiam , fiunt 2 cubip: $0 quadratis p: 7 2 poiitionibus

quadratorum,fimiliter erit deprimendo per quadrata
,
quia xqualia

per xqualia diuifa,producunt xqualia,ut 2 cu. p: $ o quadratis p: 7

2

poiitionibus xquantur poo.quare 1 cubus p: 1 f quadratis p: poii

tionibus xquantur 45-0.

Sufficit igitur dediicendo ad regulam,habere Temper 1 cubum p:

numero priorum quadratorum,addita ei quarta parte pjnumero po<

iitionum tali,qualis eft numerus pquationis primus,ut f habuerimus

i qd'qdratum p: 1 2 quadratis p: ) 6, xqualia 6 quadratis p: 60 poii*

tionibus.habebimus 1 cubum p: 1 5- quadratis p: $
6 poiitionibus x*

qualia4?o,dimidio quadrati dimidrj numeri poiitionum, Sc ii habe.

remus 1 qd qdratum pi 1 ^quadratis p;tf4«£tjualia8o poiitionibus,

haberemus 1 cubum p: 20 quadratis p:^4 poiitionibus xqualia 800,

Sc ii haberemus 1
qd'qdratum p: 20 quadratis p: 1 00,xqualia to po

iidonibus,haberemus 1 cubum p:2C quadratis p: 100 poiitionibus

xqualia 8oo,igitur hoc habito,inprtore exemplo habutmus , 1 cub.

p: 1 9 quadratis p: $ <> poiitionibus xqualia 4?°> igitur rei xftimatio,

per i7
m capitulum,eftti2v:cubica i 87-4 p : rz 80449^,

p

;B2v:cubi#

ca 287 4-, m:Rt 80449 ^-m: ^ , hie igitur eft numerus quadratoru,qui

duplicate, eft addendus ex utracp parte,quia fupponuntur 2 res ad.

dendx,& numerus addendus ex utracp parte,ex demonftranone, eft

quadratum huius,cum eo quod fit ex hoc tn 1 2,numerum quadrato.
1 - T 2 rum.

Fig. 2
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5 VIETE. THE NEW ALGEBRA
Francis Viete (Latinized Franciscus Vieta; 1540-1603) was a French lawyer with important
connections at the courts of Henry III and Henry IV. As a mathematician he made con-
tributions to trigonometry and to the solution of higher-degree equations, but he is best
remembered as the man who first introduced, in a systematic way, general letters instead of
numbers into the theory of equations, something we express by saying that he studied
x2 + ax + b = 0 instead of, say, x2 + 5x + 6 = 0. This is, however, not quite the way
Viete looked at it, but rather, as we shall see, Descartes’s way. Viete saw it as a rediscovery
of ancient Greek mathematical methods which would lead to a true mathematics, basic to
the search for a universal science, a search later continued by Descartes and Leibniz. For
this true mathematics the slogan would hold: There is no problem that cannot be solved.

The starting point for Viete was the distinction between analysis and synthesis, as he
found it in an ancient commentary to Euclid’s Elements

,
Book XIII, Prop. 1-5, which are

theorems on the golden section. This commentary—which Viete, in common with most
mathematicians of that period, ascribed to Theon of Alexandria (fl. a.d. 370), though it is

probably much older (see T. L. Heath, Euclid’s Elements, III, 442)—runs as follows:
“ What is analysis and what is synthesis ?

Analysis is the assumption of that which is sought as if it were admitted and the arrival,

by means of its consequences, at something admitted to be true.

Synthesis is the assumption of that which is admitted and the arrival, by means of its

consequences, at something admitted to be true.”

Pappus (fl. a.d. 320) uses more elaborate language in the opening words of the seventh
book of his Mathematical collection (Heath, Euclid’s Elements, I, 138):

Analysis then takes that which is sought as if it were admitted and passes from it

through its successive consequences to something which is admitted as the result of syn-
thesis. Indeed, in analysis we assume that which is sought as if it were already done, and
we inquire what it is from which this results . . . until we come upon something already
known or belonging to the class of first principles, and such a method we call analysis as
being solution backwards.

“But in synthesis, reversing the process, we take as already done that which was last
arrived at in the analysis, and, by arranging in their natural order as consequences what
were before antecedents, and successively connecting them one with another, we arrive
finally at the construction of what was sought; and this we call synthesis.”

Most classical Greek mathematics is synthesis. When analysis is used, as for instance in
Apollonius’ book on conics (Book II, Prop. 44-51), where methods are found to construct di-

ameters and tangents to conics, the analysis is followed by the synthesis, that is, the demon-
stration. Viete tries to reconstruct this ancient analysis, used, he thinks, by the Greeks,
but kept secret. For Viete the most brilliant example of analysis is Diophantus’ Arithmetica,
that is, the algebra of Diophantus, which we have already met in our discussion of Fermat.
Viete thought that he could improve on Diophantus by introducing a general letter algebra.

Pappus distinguishes between two kinds of analysis, “the one directed to the searching
{zetetikon) for the truth and called theoretical, and the other directed to the finding
(
poristikon

)
of what we are told to find and called problematic.” 1 In the first, the zetetic,

The Greek zetetikon is from the verb zeted, to seek; 'poristikon is from porizo, to provide.
The zetetic method, in Viete’s explanation, amounts to the modern analytical method. On
the history of the terms analysis” and “synthesis,” see P. Tannery, Memoires scientifiques
(Privat, Toulouse, 1926), VI, 425-440 (paper of 1903).
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approach, we look for a proof that can be inverted into a synthesis, the demonstration. In

the poristic approach we are concerned with the finding of a solution and the inversion is

usually a construction (unless the solution is found to be impossible). Viete called this

method Zetetics.

Viete took these ideas and expanded on them, constructing a calculation with species

(logistica speciosa) as opposed to the calculation with numerical coefficients
(
logistica

numerosa). Typical of the calculation with species was the demand that all terms in the

equation be homogeneous. The first exposition of this calculation was in the In artem

analyticem isagoge (Tours, 1591), of which we translate sections as they appear in the

Opera mathematica, published in 1646 at Leiden by Franciscus Van Schooten, who added a

commentary. A full English translation with commentary has been prepared by J. Winfree
Smith (St. John’s College, Annapolis, 1955). A French translation by F. Ritter can be found
in the Bollettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche (Boncompagni)
1 (1868), 223-244.

It will be seen that Viete, like many other Renaissance mathematicians, paid great

attention to Euclid’s theory of proportions
(
Elements

,
Book V) as a cornerstone of the

structure of the true mathematics. In this theory Euclid, after having defined the ratio

(logos) of two magnitudes, and then the equality of two ratios, calls magnitudes that have
the same ratio proportional. His definition makes it possible to establish proportionality in a

geometric way, without regard to the commensurability of the magnitudes, so that it holds

for rational as well as irrational (alogoi) quantities. See Heath, Euclid’s Elements, II,

116-119.

It was through Viete that the term “analytics ” was introduced into modern mathematics,

to replace the term “algebra.” As we know, both terms remained, eventually differing in

meaning. The term “zetetics” never became popular.

INTRODUCTION TO THE ANALYTIC ART

CHAPTER I. ON THE DEFINITION AND PARTITION OF ANALYSIS, AND ON THOSE
THINGS WHICH ARE OF USE TO ZETETICS.

In this chapter Viete refers to Pappus’s distinction between analysis and synthesis, and
between zetetic and poristic analysis, referring also to Euclid and Theon. There also should

be, he writes, a third kind of analysis, the rhetic or exegetic,

so that there is a zetetic art by which is found the equation 2 or proportion

between the magnitude that is being sought and the given things; a poristic art

by which from the equation or proportion the truth of the required theorem is

investigated, and an exegetic art by which from the constructed equation or

proportion there is produced the magnitude itself that is being sought. And the

whole threefold analytical art may be defined as the science of finding the truth

2 Vifete writes aequalitas
, equality, but the term “equation,” now used, seems to fit the

meaning better. The stress on proportion is due to the respect in which Book V of Euclid’s
Elements was held as a model whereby the contradiction between arithmetic and geometry
could be overcome by rigorous mathematical reasoning.
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in mathematics. But what truly belongs to the zetetic art is established by the

art of logic through syllogisms and enthymemes, 3 of which the foundations are

those very symbols

4

by which equations and proportions are obtained . . . The

zetetic art, however, has its own form of proceeding, since it applies its logic not

to numbers—which was the boring habit of the ancient analysis—but through

a logistic which in a new way has to do with species. 6 This logistic is much more

successful and powerful than the numerical one for comparing magnitudes with

one another in equations, once the law of homogeneity has been established and

there has been constructed, for that purpose, a traditional series or scale of

magnitudes ascending or descending by their own nature from genus to genus,

by which scale the degrees and genera of magnitudes in equations may be

designated and distinguished.

CHAPTER H. ON THE SYMBOLS FOR EQUATIONS AND PROPORTIONS.

Here Viete takes a number of postulates and propositions from Euclid, such as:

1. The whole is equal to the sum of its parts;

2. Things that are equal to the same thing are equal among themselves;

3. If equals are added to equals, the sums are equal;

8. If like proportionals are added to like proportionals, then the sums are proportional; 6

15. If there are three or four magnitudes, and the product of the extreme terms is equal

to either that of the middle one by itself or that of the middle terms, then these magnitudes

are proportional. 7

CHAPTER rn. ON THE LAW OF HOMOGENEOUS QUANTITIES, AND THE DEGREES AND

GENERA OF THE MAGNITUDES THAT ARE COMPARED.

The first and supreme law of equations or of proportions, which is called the

law of homogeneity, since it is concerned with homogeneous quantities, is as

follows:

1. Homogeneous quantities must be compared to homogeneous quantities

[Homogenea homogeneis comparari].

3 An enthymeme is a syllogism incompletely stated, perhaps by leaving out the major or

the minor premise; for example, in “John is a liar, therefore he is a coward,” the premise,

“every liar is a coward,” is omitted.
4 Symbols, symbola, has here more the meaning of typical rules or stipulations.

5 Hence the name “logistica speciosa” for Viete’s new type of calculation. The term

logistike was used by the Greeks for the art of calculation, in contrast to arithmetike, number
theory. Viete’s term “species” is probably the translation of Diophantus’ eidos, the term

in a particular expression, primarily in reference to the specific power of the unknown it

contains. See further the J. Winfree Smith translation of the Isagoge, pp. 21—22.
6 If a : 6 = c : d, then (a + c):(b + d) = a: b = c: d.

7 If a, 6, c, d are such that either ac — 6 2 or ad = 6c, then either a: b = b : c or a : b = c : d.
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Indeed, it cannot be known how heterogeneous quantities can be affected

among themselves, as Adrastus says. 8 Hence:

If a magnitude is added [additur] to a magnitude, it is homogeneous with it.

If a magnitude is subtracted [subdicitur] from a magnitude, it is homogeneous
with it.

If a magnitude is multiplied
[
ducitur

] by a magnitude, the result is hetero-

geneous with both.

Since they did not, these ancient Analysts, attend to this, the result was much
obscurity and blindness.

2. Magnitudes which by their own nature ascend or descend proportionally

from genus to genus are called scalars. 9

The first of the scalar magnitudes is side or root
[
latus seu radix]} 0

The second is square [quadratum].

The third is cube.

The fourth is squared square
[
quadrati-quadratum].

The fifth is squared-cube . . .

The ninth is cubed-cubed-cube.

And the further ones can from here be named by this series and method . . .

The genera of the magnitudes that we have to compare so that they may be
named in the order of the scalars are:

(1) Length and breadth [longitudo, latitudo],

(2) Plane,

(3) Solid,

(4) Plane-plane,

(5) Plane-solid . . .

(9) Solid-solid-solid.

And the further ones can be named from here by this series and method.

5. In a series of scalars, the degree in which the magnitude stands compared
to the side is called the power

[potestas ]. The other inferior scalars are called

parodic 11 grades to this power.

6. The power is pure when it is free from affection. By affection is meant that

a homogeneous magnitude is mixed with a magnitude of lower power together
with a coefficient. 12

8 Reference to a reference in Theon: “For Adrastus says that it is impossible to know how
heterogeneous magnitudes may be in a ratio to one another.” Who Adrastus was does not
seem to be known.

9 Scalares means “ladder magnitudes,” literally, steps or rungs of a ladder. Viete follows
Diophantus in the naming of the powers. The term scalar, of vector-analysis fame, is due
to W. R. Hamilton (1853).

10 This is the cosa , or res, of the cossists, hence x in our notation. The next scalars are x2

(square), x3
, x*, and so forth. In Viete these quantities have dimensions.

11 Parodic is from Greek para
,
hodas, on the way, coming up.

12 x5 is pure, x5
-f ax4 is affected.
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To this Van Schooten adds: “A pure power is a square, cube . . . But an affected power is

in the second grade: a square together with a plane composed of a side and a length or

breadth; 13 in the third grade: a cube together with a solid composed of a square and a

length or latitude.”

7. Adjunct magnitudes which multiply scalars lower in relation to a certain

power and thus produce homogeneous magnitudes are called subgradual.

Van Schooten adds: “Subgraduals are length, breadth, plane, solid, plane-plane, etc.

Thus if there be a squared square with which is mixed a plane-plane which is the side multi-

plied with a solid, then the solid will be a subgradual magnitude, and in relation to the

squared square the side will be a lower scalar.”

CHAPTER IV. ON THE RULES FOR THE CALCULATION BY SPECIES [logistica SpetioSd
]

Numerical calculation [logistica numerosa
]
proceeds by means of numbers,

reckoning by species by means of species or forms of things, as, for instance, the

letters of the alphabet.

Van Schooten adds: “Diophantus operates with numerical calculation in the thirteen

books of his Arithmetica, of which only the first six are extant, and are now available in

Greek and Latin, illustrated by the commentaries of the very erudite Claude Bachet. 14 But
the calculation by species has been explained by Viete in the five books of his Zetetics, 15

which he has chiefly arranged from selected questions of Diophantus, some of which he

solves by his own peculiar method. Wherefore, if you wish to understand with profit the

distinction between the two logistics, you must consult Diophantus and Viete together.”

He then compares specifically certain problems of Diophantus with his and with Viete’s

solutions.

There are four canonical rules for the calculation by species.

Rule I. To add a magnitude to a magnitude.

Take two magnitudes A and B. We wish to add the one to the other. But,

since homogeneous magnitudes cannot be affected to heterogeneous ones, those

which we wish to add must be homogeneous magnitudes. That one is greater

than the other does not constitute diversity of genus. Therefore, they may be

13 x2
is pure, x2 + ax is affected.

14 Bachet’s edition of Diophantus is of 1621, and was the inspiration of Fermat’s work on
numbers (see selection 1.6).

15 In this work of 1593 Vihte gives many examples of his logistica speciosa.
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fittingly added by means of a coupling or addition; and the aggregate will be

A plus B, if they are simple lengths or breadths. But if they stand higher in the

scale, or if they share in genus with those that stand higher, they will be denoted

in the appropriate way, say A square plus B plane, or A cube plus B solid, and

similarly in further cases.

However, the Analysts are accustomed to indicate the affection of summation

by the symbol +

.

Rule II. To subtract a magnitude from a magnitude.

This leads in an analogous way to A — B, A square — B square, A is larger than B, also

to rules such as A - {B + D) = A — B - D; Viete writes = instead of our -.

Rule III. To multiply a magnitude by a magnitude.

Take two magnitudes A and B. We wish to multiply the one by the other.

Since then a magnitude has to be multiplied by a magnitude they will by their

multiplication produce a magnitude heterogeneous with respect to each of them;

their product will rightly be designated by the word “in” of “under” \sub], e.g.,

A in B, which will mean that the one has been multiplied by the other, or, as

others say, under A and B. and this simply when A and B are simple lengths

or breadths .

18

But if the magnitudes stand higher in the scale, or if they share in genus with

these magnitudes, then it is convenient to add the names themselves, e.g., A
square in B, or A square in B plane solid, and similarly in other cases.

If, however, among magnitudes that have to be multiplied, two or more are

of different names, then nothing happens in the operation. Since the whole is

equal to its parts, the products under the segments of some magnitude are equal

to the product under the whole. And when the positive name [nomen adfirmatum]

of a magnitude is multiplied by a magnitude also of positive name, the product

will be positive, and negative
[
negatum

]
when it is negative .

17

From which precept it follows that by the multiplication of negative names

the product is positive, as when A — B is multiplied by D — G\ since the

product of the positive A and the negative G is negative, which means that too

much is taken away [and similarly negative B into positive]. Therefore, in

compensation, when the negative B is multiplied by the negative G the product

is positive .

18

The denominations of the factors that ascend proportionally from genus to

genus in magnitude behave, therefore, in the following way:

A side multiplied by a side produces a square,

A side multiplied by a square produces a cube . .

.

10 In arithmetic the custom was to use “in”: ducta in; in geometry, “under”: a rectangle

is “under” its sides.

17 + in + is + ; + in — is —

.

10 (A - B)(D - G) = AD - AG - BD + BG.
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And conversely, a square multiplied by a side produces a cube . . .

A solid multiplied by a solid-solid produces a solid-solid-solid,

And conversely, and so on in that order.

Rule IV. To divide a magnitude by a magnitude.

This leads in an analogous way to such expressions as
^ P^ane P cube

A A plane’

so forth. Furthermore to add
Z P

!f

ne
to
A P

-I

alle

;
the sum will be

Or n

G in A plane + B in Z plane

B in G •

To multiply 1^5! by Z; the result will be fjP
lane in Z

CHAPTER V. CONCERNING THE LAWS OF ZETETICS.

The way to do Zetetics is, in general, directed by the following laws

:

1. If we ask for a length, but the equation or proportion is hidden under the
cover of the data of the problem, let the unknown to be found be a side.

2. If we ask for a plane ... let the unknown to be found be a square.

9. If the element that is homogeneous under a given measure happens to be
combined with the element that is homogeneous in conjunction, there will be
antithesis.

These laws amount to introducing (1) *, (2) x2
, (3) x3

, (4) the law of homogeneity, as in
x = ab; and to (5) denoting the unknown by vowels A, E, .

.

. and the given magnitudes by
consonants, B,G, D, . . .

, (6) constructing x2 = ab + cd, or, as Viete writes it: A square
equal to B in C + Din F; (7) forming ax + bx (“homogeneous in conjunction”); (8) form-
ing x3 + ax2 - bx2 = c

2d + e
3

; (9) passing from x3 + ax2 + bx2 - c2d + e
2
/ = g

3 to
x3 + ax2 — bx2 = c

2d — e
2
f + g

3 (“antithesis”). Then Viete continues with Propositions
marked (10) to (12), which state that an equation is not changed by antithesis, by hypo-
bibasm, and by parabolism. Hypobibasm means dividing by the unknown, as passing from
x3 + ax2 = b 2x to x2 + ax = b2

,
parabolism is dividing by a known magnitude. Nos. (13)

and (14) deal with the relation of equations to proportions.

These are the titles of the next chapters

:

VI. Concerning the examination of theorems by means of the poristic art.

VII. Concerning the function of the rhetic art.

VIII. The notation of equations and the epilogue to the art. 18

19 Chapter VI mentions the retracing of the zetetic process by synthesis; Chapter VII the
special application of the analytic art, after solution, to special arithmetic and geometric
problems. Here Viete speaks of the exegotic art.” Chapter VIII is the discussion of
different possible expressions and equations, stressing homogeneity. There are 29 rules.
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This chapter ends as follows:

29. Finally, the analytic art, now having been cast into the threefold form of

zetetic, poristic, and exegetic, appropriates to itself by right the proud problem

of problems, which is

THEBE IS NO PROBLEM THAT CANNOT BE SOLVED .

20

This paper is followed (in the 1646 edition) by Ad logisticam speciosam notae priorae.

Originally it was followed by Ad logisticam speciosam notae posteriores, which was already

lost at the time ofVan Schooten. A French translation of the Notae priorae follows the Ritter

translation of the Isagoge in the Bollettino de Bibliographic e di Storia (Boncompagni) 1

(1868), 245-275. It contains 56 propositions concerning algebraic identities and geometric

problems. After this comes the Zeteticorum libri quinque (1593), inspired by Diophantus and

solving more problems by means of the logica speciosa. We give an example, taken from

Viete’s Zetetics, comparing Diophantus’ method and Viete’s:

I. To divide a given number into two numbers with a given difference (Diophantus,

Arithmetic, I, Prob. 1).

Diophantus: Let the given number be 100, and the difference be 40; let the smaller num-

ber be x, then the larger will be x + 40. Then x + (x + 40) = 2x -f 40 = 100, hence

2x = 60, Z = 30, a: + 40 = 70.

Viete: Let the given number be D, and the difference be B; let the smaller side be A, then

the larger will be A + B. Then A + (A + B) = A‘2 + B = D, hence A2 = D — B,

A = D\ — B\, A + B = D\ + B\.

In modern notation: D = a, B = b, A = x, then x + (x + b) = a, 2x = a — b, x =

\(a — b), x + b = \(a + b). The transition from ancient algebra to our modern one is very

clear here.

6 GIRARD. THE FUNDAMENTAL THEOREM OF ALGEBRA

Albert Girard (1595-1632), a native of Lorraine who worked in Holland, was the editor

of the works of Simon Stevin. His L’invention nouvelle en Valgebre (Amsterdam, 1629; edited

by D. Bierens de Haan, Mure, Leiden, 1884) was based on Stevin’s Arithmetique of 1585, but

where Stevin’s voluminous treatise was, in the main, only a well-written presentation of

known results, leading up to the solution of third- and fourth-degree equations, Girard’s

much shorter book contains many new results. Its fame is based on its formulation of the

fundamental theorem of algebra, so that he takes complex roots seriously (contrary to

Stevin). In presenting the section of the book in which Girard formulates this theorem

(pp. E2v-F2r
), we have maintained the Stevin terminology, but not his notation. We have

therefore kept the words
‘

‘ quantity
’

’ for term
,

‘ 1 denominator
’

’ for exponent, and ‘ 1 number

for coefficient. A discussion of Girard’s book can be found in H. Bosmans, “La theorie des

equations dans ‘L’invention nouvelle en l’algebre’ d’Albert Girard,” Mathesis 41 (1926),

59-67, 100-109, 145-155.

20 Quod ©st, Nullum non problema solvere.
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Since the theorem which will follow requires some new expressions, we shall

begin with definitions.

Definition I. A simple equation is one that has only one term 1 equal to a
number; otherwise it is called composed or mixed.

Explication. As when a:
2

is equal to 49; or 12x equal to 24; hence when one
term is equal to the other, the equation is simple. But when there are more
terms than two, it is composed or mixed, as when x2

is equal to 6a; -f 40, or
similar equations. 2

Definition II. When one term is compared to another, the first is called the
subject, or the antecedent, the other one is called the predicate \parangon 3

] or
consequent.

For example in 3a:
2 — 4a; — 70, 3a;

2 — 4a: is the subject, 70 the predicate.

Definition III. A complete equation is one that has all the terms without
leaving one out.

Definition IV. An incomplete equation is a mixed equation that does not
have all its terms.

Thus, x6 — 11a;5 + 13a;4 — 7a;
3 + 6a;

2 + 9a; — 31 is complete, but a;
4 = 5a:

2 + 36 or
x3 = 12a; — 16 are incomplete.

Definition V. A mixed equation that has only one default 4
is almost com-

plete; one that has two defaults is complete but for two [complette a deux pres];
and in a similar way we have equations complete but for three, etc.

Thus, x3 = lx — 6 is almost complete.

1 We translate “grandeur” by “term.”
2 Girard writes “when 1© is equal to 49: or 120 equal to 24,” “when 1© is equal to

6© + 40.” This is Stevin’s notation. From now on we paraphrase the examples used to
illustrate the Definitions.

3 French paragon
, from Spanish parangon, model, type.

4 A default is a missing term.
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Definition VI. A primitive equation is one in which the denominators of the

terms are relative primes. 5

Thus, xi = 6*3 — 13* + 16 is primitive.

Definition VII. A derivative equation is one in which the denominators of the

terms have common divisors [sont entr’eux composez].

Thus, x6 = 7ad - 9a:
2 + 12, where x3

,
x2

,
x, x° are the primitives or x3 = 17, where x3

and a;
0 are the primitives, as Stevin says in his Arithmetique, Def. 27°.

Definition VIII. In mixed equations the highest term 6
is called the maximum

or high extremity [maxime, ou haute extremite ]; the one that is one degree lower

is called the first mixed; the one that is one degree lower still is called the second

mixed; and so on, so that x° is the closure or lowest extremity [la fermeture ou

basse extremite].

For example, if x9 = 3a:
8 - 10a;

6 + 4* + 12, then a;
9

is the maximum, 3*8 the first

mixed, 10a;6 the third mixed, 4a; the eighth mixed, and 12 is the closure.

Definition IX. In mixed equations there are three orders; the first is called the

prior order, when the numbers of algebra are the subject (as partly unknown)

and the closure or common number is the predicate or parangon (as the only

otherwise known). The second order is the alternative, in which the even

quantities are separated from the odd ones in such a way that the high extremity

is -p not — . The third order is the posterior one, in which the high extremity

has the sign + ,
with the number l.

7

Definition X. The alternate order of equations is that in which the maxi-

mum or high extremity has no other number than unity, with the sign + ,
and

all odd denominators or characters are on one side, and the even ones on the

5 Def. 27 of Stevin’s Arithmetique (1585) makes a distinction between polynomials such as

ax + b, px2 + qx + r, bx3 + mx + n, which are called primitive, and those such as ax2 + b,

ex3 + d, px4 + qx2 + q, bx
6 + snx2 + n, which can be obtained from primitive polynomials

by replacing x by a power of x. These polynomials are called derivative.

6 The term with the highest exponent.
7 Number = coefficient.
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other side, to wit the ones as the subject, the other ones as the predicate. Which
serves to find the original signs again, when the equation in question is re-

ordered.

For example, let the equation be a;
7 = 4xB + 14x5 - 56x 4 - 49x3 + 196a:2 + 36a; - 144;

put in alternate order it is x7 - 14a;5 + 49a;
3 - 36a; = 4a:

6 - 56a;4 + 196a;2 - 144.

Definition XI. When several numbers are given, let the total sum be called
the first faction; the sum of all their products two by two be called the second
faction; the sum of all their products three by three be called the third faction;
and always so on until the end, but the product of all the numbers is the last
faction: and so there are as many factions as there are numbers given.

Let the numbers be 2, 4, 5; then the first faction is 11, the second faction is 8 + 10 + 20
= 38, the third faction is 40. If the numbers are 2, —3, 1, 3, then we get in succession
3, -7, -27, -18; when they are 1, 2, 3, 4, -1, -1, -2 the factions are 6, -14, -56,
49, 196, -36, — 144. 8

Definition XII. When several unities are placed at the
1 sides, and other numbers in the middle, find by means of

1 1 addition the figure which may be called the triangle of ex-
12 1 traction: and let the unity above signify simple arithmetic,
13 3 1 and the others stand for algebra; then let 1, 1 be called the

1 4 6 4 1 rank of the x, and 1, 2, 1 the rank of the x2
,
furthermore let

1, 3, 3, 1 be called the rank of the x3
,
and so always on till

infinity. 9

Theorem I. If a set of numbers are present, then the number of products of
every faction can be found by the triangle of extraction: and by its rank in
accordance with the multitude of the numbers.

Thus, if four numbers are given, take rank 4 in the triangle, which gives 1, 4, 6, 4, 1. The
first 1 is the unity of the maximum, the 4 gives the number of terms of the sum, the 6 that
of the double products, and so forth.

8 There is an error here: the factions are 6, 0, —42, —21, 84, 20, —48.
9 On this triangle of extraction see Selection 1.5 on Pascal’s Triangle arithmetique. Girard

finds 2 as 1 + 1, 3 as 1 -f 2, 6 as 3 + 3, etc. “Simple arithmetic” means ordinary number
(x°), the other numbers come from algebra; x, x2

, etc.
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Theorem II. All equations of algebra receive as many solutions as the de-

nomination of the highest term shows, except the incomplete, 10 and the first

faction of the solutions is equal to the number of the first mixed, their second

faction is equal to the number of the second mixed; their third to the third

mixed, and so on, so that the last faction is equal to the closure, and this accord-

ing to the signs that can be observed in the alternate order.

Explication. Let a complete equation xi = 4x3 + 7

x

z — 34* — 24 be given,

then the denominator of the highest term is 4, which means that there are four

certain solutions, no more and no less, namely 1, 2, —3, 4: here 4 is the number

of the first mixed, 7 of the second mixed, and so on. But to see the thing in its

perfection we must take the signs which we can see in the alternate order, as

xi — lx2 — 24 = 4*3 — 34*. Then the numbers with their signs (according to

the order of the quantities) will be 4, - 7, - 34, - 24, which are the four factions

of the four solutions.

Otherwise let *4 = 4x3 — 6*2 + 4x — 1 , and in alternate order *4 + 6*2 + 1 =

4*3 + 4x. of which the numbers with the signs, according to the order of the

terms, are 4, 6, 4, 1, which are factions of the four solutions 1, 1, 1, 1, and so the

others (observe here that when the solutions are simple unities,-then the factions

are the numbers of the triangle of extraction of the rank of the highest quantity)

;

similarly in the equation of the 10th definition, which is

x7 = 4x6 + 14*5 — 56*4 — 49*3 + 196*2 + 36* — 144,

there are 7 solutions, namely 1, 2, 3, 4, — 1, —2, -3, which are discussed in the

10th and 11th definitions.

As to the incomplete equations, they have not always so many solutions,

nevertheless we can well explain the solutions whose existence is impossible,

and show wherein lies the impossibility because of the defectiveness and in-

completeness of the equation. Such as x3 = 7* — 6, here we still have the three

solutions, namely 1,2, —3, and all incomplete equations such as this one can be

put in the form of complete ones: *3 = 0*2 + 7* — 6 in order to find all the

solutions as it has been done before. For instance, *3 = 167* — 26 will complete

as *3 = 0*2 + 167* — 26, and in alternate order *3 — 167* = 0*2 — 26, the

numbers with their signs (according to the order of the quantities) will be

0, —167, —26. Hence we must find three numbers which have such factions,

namely, their sum must be 0, the sum of their double products — 167, and the

product of all three —26. Now, if we have found one of the three, say — 13, as

10 This phrase “except the incomplete” seems to imply some restrictions, which Girard

tries to remove in his “Explication,” However, many authors seem to be willing to give

Girard priority in the formulation of the fundamental theorem of algebra. There exists a

formulation of the fundamental theorem by Peter Rothe, a Nuremberg mathematician, in

his Arithmetica philosophica (Nuremberg, 1600), where he states that equations have at

most as many roots as their degree indicates. Descartes, in his Geometrie (1637), admits that

an equation can be said to have as many roots as the degree indicates, if imaginary roots

are taken into account (Selection II. 7). Proofs of the theorem are attempted in the

eighteenth century; see below, Selections II. 10, 11, 12.
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we did above, then since the product of the three was -26, the product of the
two others will be 2, and as the sum of the three numbers is 0, and one of them
is — 13, hence the sum of the two others will be 13. The question is now reduced
to this one: to find two numbers of which the sum is 13 and the product 2.

Observe that we say two numbers, it will therefore be an equation of which the
major term is *2 and hence *2 + 2 = 13*, in alternate form. If we restore
this to the ordinary order we have *2 = 13* - 2, hence the numbers of the
solution will be 6| + y/40j and also 6| — V 40 j, which together with — 13 will
be the three required solutions.

In the same way, if *4 = 4* - 3, then the four factions will be 0, 0, 4, 3, and
consequently the four solutions will be

1

1

-1 + V—

2

-1 _ y/^2

(observe that the product of the last two is 3). We must therefore always remem-
ber to keep this in mind: if someone were to ask what is the purpose of the
solutions that are impossible, then I answer in three ways: for the certitude of
the general rule, and the fact that there are no other solutions, and for its use.
The use is easy to see, since it serves for the invention of solutions of similar
equations as we can see in Stevin’s Arithmetic, in the 5th difference of the
71st problem ... 11

By this means you will find that nobody before has solved the equations with
all the solutions.

One of Stevin’s problems is *3 = 6*2 - 10* + 3, for which he finds only the solution 3.
Girard finds also 14 + Vf and 1| — Vf ;

there are some other examples as well.
Girard, continuing, studies algebraic equations in more detail. Among his results are

expressions for the sums sk of the I'th powers of the roots. In our modern notation his results
can be written as follows: if the equation is *n = aq*’*- 1 + a2x

n - 2 + a
,
so that a

is the “first mixed,” then

si ®i> s2 — a i 2a2 ,
s3 = a® — 3aqa2 + 3a3 ,

*4 = a\ - 4afa2 + 4a^3 + 2a\ - 4

a

4 .

Girard writes

“A, Aq - B2, Acub — AB3 + C3

Aqq - AqB4 + AC4 + Bq2 - D4

sera la somme des solutions, quarez, cubes, quare-quarez.”

11 See The principal works ofSimon Stevin, IIB (Swets-Zeitlinger, Amsterdam, 1958), 648.
Stevin, m this problem LXXI, discusses the general theory of cubic equations. See also
H. Bosnians, La resolution des equations du 3 e degre d’apres Stevin,” Mathesis 37 (19231
246-254, 304-311, 341-347.

V ’
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The last part of the book is entitled, “On the measure of the area of spherical triangles

and polygons, newly invented,” and contains the theorem:

Every spherical polygon bounded by arcs of great circles has as many surface degrees as

the sum of all its interior angles exceeds the sum of the interior angles of a rectilinear poly-

gon of the same name when the area of the sphere is taken as 720 surface degrees.

The theorem is accompanied by a rather cumbersome proof. The theorem was discovered

earlier by Thomas Harriot (1603), but remained in manuscript. See J. A. Lohne, “Thomas

Harriot als Mathematiker,” Centaurus 11 (1965), 19-45. The theorem is sometimes called

after Legendre, who explained it in a very simple fashion, in Elements de geometrie (Paris,

1794), Livre VII, Proposition 23.

7 DESCARTES. THE NEW METHOD

The search for a universal mathematics leading to a universal science, on which Viete had

been meditating, appears again, in much stronger philosophical form, in the work of Rene

Descartes (Latinized Renatus Cartesius; 1596-1650). Descartes, a French gentleman of

independent means, was educated by the Jesuits; after a term as a soldier, he lived in

Holland during the most productive part of his life. He used to connect his search for a

general method with a mystical experience, on November 10, 1619 or 1620, of which he

wrote that, “full of enthusiasm, I discovered the foundations of a wonderful science”

(mirabilis scientiae fundamenta). What was on his mind was first laid down in his 21 Regulae

ad directionem ingenii (Rules for the guidance of our mental powers), written prior to or in

1629, first published in 1692 in Dutch and in 1701 in Latin; see Descartes, Oeuvres, X,

359-469. Here we find some of the ideas of Viete again expressed, but then developed in

Descartes’s own way. We follow the translation in N. K. Smith, Descartes: Philosophical

writings (St. Martin’s Press, New York, 1953).

In Rule IV, “In the search for the truth of things a method is indispensable,” we find:

For the human mind has in it a something divine, wherein are scattered the

first seeds of useful modes of knowledge. Consequently it often happens that,

however neglected and however stifled by distracting studies, they spon-

taneously bear fruit. Arithmetic and geometry, the simplest of the sciences, are

instances of it. We have evidence that the ancient geometers made use of a

certain analysis which they applied to the solution of all problems, although,

as we find, they invidiously withheld knowledge of this method from posterity.

There is now flourishing a certain kind of arithmetic, called algebra, which

endeavors to accomplish in regard to numbers what the ancients achieved in

respect to geometrical figures. These two sciences are no other than spontaneous

fruits originating from the innate principles of the method in question.

But when Descartes first studied mathematics, he was disappointed in his search for his

method of true understanding

:

For truly there is nothing more futile than to occupy ourselves so much with

mere numbers and imaginary figures that it seems that we could be content to
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rest in the knowledge of such trifles . . . When, however, I afterwards bethought
myself how it could be that the first discoverers of philosophy refused to admit
to the study of wisdom anyone not versed in mathematics, as if they viewed
mathematics as being the simplest of all disciplines, and as altogether indispens-
able for training and preparing our human powers for the understanding of
other more important sciences, I could not but suspect that they were acquainted
with a mathematics very differerent from that which is commonly cultivated in
our day. Not that I imagined that they had a complete knowledge of it. Their
extravagant exultations, and the sacrifices they offered for the simplest dis-
coveries, show quite clearly how rudimentary their knowledge must have been.
I am convinced that certain primary seeds of truth implanted by nature in the
human mind . . . had such vitality in that rude and unsophisticated ancient
world, that the mental light by which they discerned virtue to be preferable to
pleasure . . . likewise enabled them to recognize true ideas in philosophy and
mathematics, even though they were not yet able to obtain complete mastery of
them. Certain vestiges of this true mathematics I seem to find in Pappus and
Diophantus, who, though not belonging to that first age, yet lived many cen-
turies before our time .

1 These writers, I am inclined to believe, by a certain
baneful craftiness, kept the secrets of this mathematics to themselves
Instead they have chosen to propound ... a number of sterile truths, deductively
demonstrated with great show of logical subtlety, with a view to winning an
amazed admiration, thus dwelling indeed on the results obtained by way of their
method, but without disclosing the method itself—a disclosure which would
have completely undermined that amazement. Lastly, in the present age there
have been certain very able men who have attempted to revive this mathe-
matics. For it seems to be no other than this very science which has been given
the barbarous name, algebra—provided, that is to say, that it can be extricated
from the tortuous array of numbers and from the complicated geometrical
shapes by which it is overwhelmed, and that it be no longer lacking in the
transparency and unsurpassable clarity which, in our view, are proper to a
rightly ordered mathematics.

Then Descartes asks what is meant by mathematics:

What, on more attentive consideration, I at length came to see is that those
things only were referred to mathematics in which order or measure is examined,
and that with respect to measure it makes no difference whether it be in num-
bers, shapes, stars, sounds or any other object that such measure is sought, and
that there must therefore be some general science which explains all that can be

1 Vote’s, Descartes’s starting points are Pappus and Diophantus. With Viete who
speaks of improving on or rescuing this art of analysis (which he dates up to Plato) Des-
cartes believes that this art was well developed in ancient times and kept a semisecret. The
ependence of Descartes on Viete is not clear; Descartes claimed not to have seen the logistica

speciosa until he himself found his own method.
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inquired into respecting order and measure, without application to any other

special subject-matter, and that this is what is called mathematica universalis,

no specially devised designation, but one already of long standing, and of cur-

rent use as covering everything on account of which the other sciences are called

parts of mathematics.

Carrying out this program, Descartes states several propositions which he later works

out in more detail in his Discours de la methode and its appendix, the Geometrie (1637; see

Selection II. 8), as, for example, in Rule XVI, on the use of letters instead of numbers:

Thus, for instance, if we seek the base of a right-angled triangle with the given

sides 9 and 12, the arithmetician will say that it is V225 or 15. But we shall

substitute a and b for 9 and 12, and shall find the base to be V

a

2 + b2 . In this

way the two parts a and b, which in the number notation were confused, are

kept distinct. Also, the realization that terms like “root,” “square,” “cube,”

“ biquadratic ” for proportions which follow by continuous order, are misleading.

For though a magnitude may be entitled a cube or a biquadratic, it should

never be presented to the imagination otherwise than as a line or a surface . . .

What above all requires to be noted is that the root, the square, the cube, etc.,

are merely magnitudes in continued proportion, which always implies the freely

chosen unit of which we have spoken above [in Rule XIV]. 2 The first propor-

tional is related to this unit immediately or by one single relation, the second by

the mediation of the first and the second, and so by three relations, etc. We
therefore entitle the magnitude, which in algebra is called the root, the first

proportional; that called the square we shall speak of as being the second

proportional, and similarly in the case of the other.

In Rule XVIII Descartes shows how he envisages addition, subtraction, multiplication,

and division of line segments, in which he represents the product of two line segments a

and b not only as a rectangle, but also as a line. All these ideas were later carried out in his

Geometrie.

8 DESCARTES. THEORY OF EQUATIONS

Descartes carried out his ideas on the algebraic representation of geometrical quantities in

his Geometrie, published as appendix I to his Discours de la methode pour bien conduire sa

raison et chercher la verite dans les sciences (Discourse of the method for conducting reason

2 This is the place where Descartes’s new algebra is born, the algebra that can be used for

coordinate geometry. When 1 is a unit length and x an arbitrary line segment, the proportion

1 : x = x : x2 allows us to express x2 as a line segment. It is here that Descartes breaks with

Viete’s condition of homogeneity. See further Selections III. 3, 4.
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well and seeking the truth in the sciences; Leiden, 1637); Oeuvres de Descartes, ed. C. Adam
and P. Tannery (12 vols.; Paris, 1897-1918), VI, 1-78, 367-485. In this Geometrie he showed
how the “Algebra of the Moderns,” that is, the Renaissance algebra of Cardan and his
successors, can be applied to the “Geometry of the Ancients,” that is, to the Greek geometry
of Apollonius and Pappus. How he did it we show in Selection III.4. But at the same time,m Book Three of the Geometrie, he applied it to the theory of equations, adding new dis-
coveries of his own in a presentation of the subject that begins to have a modern look, since
his authority made it acceptable to a growing number of mathematicians. He presents some
important theorems that are valid for the case in which the right-hand member of an
equation is zero, such as the proposition that x - a is a factor of the left-hand member if
* = a ^ a root of the equation. His text also contains a formulation of the fundamental
theorem of algebra, as well as the so-called “rule of signs” called after him. We present the
section of Book Three that contains these results, in a translation based on The Geometry of
Rene Descartes, translated from the French and Latin by D. E. Smith and M. L. Latham
(Open Court, Chicago, London, 1925; Dover, New York, 1954), 159-163, 175; this edition
also has the original French text.

In the translation we have left the term “dimension” for our degree, “true” for positive
roots and “false” for negative ones. The terms “real” and “imaginary” are also in
Descartes s text; the use of these terms in our modern sense begins here.
Note that Descartes’s coefficients have special numerical values, so that he ignores Viete’s

logistica speciosa 1 as well as his own way of denoting constants by letters a,b, c, . . . But he
introduces x, y for the unknown and the variables and this has become standard practice.

It is necessary that I make some general statements concerning the nature of
equations, that is, of sums composed of several terms, in part known, in part
unknown, of which some are equal to the others, or rather, all of which con-
sidered together are equal to zero, because this is often the best way to consider
them.

Know then that in every equation there are as many distinct roots, that is,

values of the unknown quantity, as is the number of dimensions of the unknown
quantity. 2

As we have said, Descartes’s relation to Viete is not clear. The same holds for his relation
to the English mathematician and astronomer Thomas Harriot (1560-1621), also known for
his description of newly named Virginia (1588). Harriot wrote (probably about 1610) the
influential Artis armlyticae praxis (London, 1631), with a theory of equations which in several
aspects anticipates Descartes’s treatment. He wrote aaa - 366a -f 2.ccc for our
x3 - 362x = 2c3 (see Selection 1.2) and used > and < in our present sense: Signurn
magontatis ut a > b significat a majorem quarn b. John Wallis (1616-1703), in his Treatise of
algebra (Oxford, 1685), claimed that Descartes borrowed heavily from Harriot: “Hariot hath
laid the foundations on which Des Cartes (though without naming him) hath built the
greatest part (if not the whole) of his Algebra or Geometry.” Wallis missed the point, but his
statement foreshadows the tension between English and Continental mathematicians
typified in the later Newton-Leibniz priority struggle. See J. F. Scott, The mathematical
work of John Wallis (Taylor and Francis, London, 1938), chap. IX.

2 This is Descartes’s formulation of the fundamental theorem of algebra. For its further,
more exact, formulation and proof, see Selections II.6 on Girard, II. 10 on Euler, and 11.12
on Gauss.
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Suppose, for example, * = 2 or * — 2 = 0,
3 and again, x —

3, or * — 3 = 0.

Multiplying together the two equations * — 2 = 0 and * — 3 = 0, we have

** — 5* + 6 = 0, or ** = 5x — 6. This is an equation in which * has the value

2 and at the same time * has the value 3. If we next make * — 4 = 0 and mul-

tiply this by ** — 5* + 6 = 0, we have *3 — 9** + 26* — 24 = 0, another

equation, in which *, having three dimensions, has also three values, namely,

2, 3, and 4.

It often happens, however, that some of the roots are false, or less than

nothing. Thus, if we suppose * to represent the defect 4 of a quantity 5, we have

* + 5 = 0 which, multiplied by *3 — 9** + 26* — 24 = 0, gives *4 — 4*3

— 19** + 106* — 120 = 0, as an equation having four roots, namely three

true roots, 2, 3, and 4, and one false root, 5.

It is evident from this that the sum of an equation containing several roots is

always divisible by a binomial consisting of the unknown quantity diminished

by the value of one of the true roots, or plus the value of one of the false roots.

In this way, the dimension of an equation can be lowered.

On the other hand, if the sum of an equation is not divisible by a binomial

consisting of the unknown quantity plus or minus some other quantity, then

this latter quantity is not a root of the equation. Thus the last equation *4 — 4*3

— 19** + 106* — 120 = 0 is divisible by * — 2, * — 3, * — 4, and * + 5, but

is not divisible by * plus or minus any other quantity, which shows that the

equation can have only the four roots, 2, 3, 4, and 5.

We can determine from this also the number of true and false roots that any

equation can have, as follows: An equation can have as many true roots as it

contains changes of sign, from + to — or from — to + ;
and as many false roots

as the number of times two + signs or two — signs are found in succession. 5

Thus, in the last equation, since +*

4

is followed by — 4*3
,
giving a change of

sign from + to —
,
and — 19** is followed by + 106* and + 106* by — 120, giving

two more changes, we know there are three true roots; and since — 4*3
is fol-

lowed by — 19** there is one false root.

It is also easy to transform an equation so that all the roots that were false

shall become true roots, and all those that were true shall become false. This is

done by changing the sign of the second, fourth, sixth, and all even terms,

leaving unchanged the signs of the first, third, fifth, and other odd terms. Thus,

if instead of

+ *4 — 4*3 — 19** + 106* — 120 = 0

3 Descartes writes: “

x

equal to 2 or x — 2 equal to nothing, and again x x 3, or x — 3 x 0.”

He does not use the sign = ,
already introduced by Recorde and Harriot; see note 1.

4 A defect [defaut] is the negative of a positive number; thus — 5 is the defect of 5, that is,

the remainder when 5 is subtracted from zero.
5 This is the sign rule as stated by Descartes. It was formulated in a more precise manner

by Isaac Newton in his Arithmetica universalis (Cambridge, 1707) and by C. F. Gauss in

“Beweis eines algebraischen Lehrsatzes,” Crelle's Journal fur die reine und angewandte

Mathematik 3 (1828), 1-4; Werke, III, 65-70. We now can express it in the following way:
If f(x) = 0 is an equation of degree n with real coefficients, where f(x) = a0x

n + a^x11 ' 1

4- • • • + an _ \X + an , then the number of positive roots is equal to or an even number less

than the number of variations in the signs of successive terms. Multiple roots have to be

counted in accordance with their multiplicity, and zero is not a positive root.
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we write

+ z4 + 4z3 - 19xx - 106a; - 120 = 0,

we get an equation having only one true root, 5, and three false roots, 2, 3, and 4.

If the roots of an equation are unknown and it be desired to increase or
diminish each of these roots by some known number, we must substitute for the
unknown quantity another quantity greater or less by the given number. 6 Thus,
if it be desired to increase by 3 the value of each root of the equation

x4 — 4a;
3 — 19a;a; + 106a; — 120 = 0,

put y in the place of a;, and let y exceed a; by 3, so that y - 3 = a;. Then for xx
put the square of y — 3, or yy — 6y + 9; for a;

3 put its cube, y
3 — 9yy + 27y— 27; and for a;

4 put its fourth power \quarre de quarre ], or y
i — 12y

3 + 54yy— 108y + 81. Substituting these values in the above equation, and combining,
we have

y
4 - 12y

3 + 54yy - 108y + 81

+ 4y
3 - 36yy + 108y - 108

- 19yy + 114y - 171

- 1(% + 318

- 120

y
i - %3 - 1yy +8y = o,

or y
3 - %yy - iy + 8 = o,

whose true root is now 8 instead of 5, since it has been increased by 3.

If, on the other hand, it is desired to diminish by 3 the roots of the same
equation, we must make y + 3 = x and yy + by + 9 = xx, and so on, so that
instead of

xi + 4a;
3 — 19a;a; — 106a; — 120 = 0

we have

?/
4 + 12y3 + 54yy + 108y + 81

+ 4y
3 + 36yy + 108y + 108

— 19yy — 114y — 171

- 106y - 318

- 120

y
i + 16y3 + 71yy - 4y - 420 = 0.

It should be observed that increasing the true roots of an equation diminishes the
false roots by the same amount; and on the contrary diminishing the true roots
increases the false roots; while diminishing either a true or a false root by a

6 This change of variable of an equation by means of substitution of the type y = x + a
is not new, and is, as we observed in Selection II.4, note 8, one of the substitutions used by
Cardan in his Ars magna (1545). Descartes here shows its use in the search for positive and
negative roots. The notation, as elsewhere in Descartes’s writings, strikes us as quite
modern.
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quantity equal to it makes the root zero; and diminishing it by a quantity

greater than the root renders a true root false or a false root true. Thus by

increasing the true root 5 by 3, we diminish each of the false roots, so that the

root previously 4 is now only 1, the root previously 3 is zero, and the root

previously 2 is now a true root, equal to 1, since — 2 + 3 = +1. This explains

why the equation y
3 — 8yy — y + 8 = 0 has only three roots, two of them,

1 and 8, being true roots, and the third, also 1, being false; while the other

equation y
4 — 16y3 + 71yy — 4y — 420 = 0 has only one true root, 2, since

+ 5 — 3 = +2, and three false roots, 5, 6, and 7.

By going from Cardan via Viete to Descartes we have bypassed some important writers

on algebra, among them Rafael Bombelli (c. 1530-after 1572) and Simon Stevin (1546-1620).

Bombelli introduced operations with imaginary numbers in connection with the solution of

the cubic equation. Stevin’s algebra, contained in his Arithmetique (Leiden, 1585), can be

studied in an English paraphrase in the Principal works, IIB (Swets-Zeitlinger, Amsterdam,

1958).

Bombelli and Stevin replaced the old notation for the powers of the unknown, by which

each power was expressed by its own symbol (a method that had been used by Diophantus),

by a notation which used numbers to express exponents, so that we find in Stevin (1) for x,

or a, etc., (2) for x2
,
or a2

,
etc., © for x°, or a°, etc. Another algebraist, William Oughtred

(1574-1660), a Cambridge-educated English minister, author of Claris mathematicae

(London, 1631), has been credited with the introduction or improvement of mathematical

symbols, such as the use of x for multiplication, and the introduction of
; ; for proportion.

See F. Cajori, William Oughtred (Open Court, Chicago, 1916), who also gives a sample of

his work on equations in English translation. Those interested in the history ofmathematical

notations should consult F. Cajori, History of mathematical notations (2 vols.; Open Court,

Chicago, 1928, 1929). On Oughtred’s older contemporary Harriot see note 1
,
and J. A.

Lohne, “Thomas Harriot als Mathematiker,” Centaurus 11 (1965), 19-45.

9 NEWTON. THE ROOTS OF AN EQUATION

Isaac Newton (1642-1727) was born on the day then called December 25, 1642, according

to the old (Julian) calendar. The present (Gregorian) calendar was introduced (not without

great opposition) into England and her American colonies in 1752, when it was decreed

that September 3 should be renamed September 14, and the year, which used to begin on

March 25, should henceforth begin on January 1. Those who count retroactively, therefore,

call Newton’s birthday January 5, 1643, and this is the reason why the year of Newton’s

birth is taken as 1642 in some accounts and 1643 in others.

Newton entered Trinity College, Cambridge, in 1661, succeeded Isaac Barrow in the

Lucasian professorship in Cambridge in 1669, moved to London in 1696 as Warden of the

Mint, and became Master of the Mint in 1699. From 1703 till his death he was president

of the Royal Society. The period from 1664 to 1669, during part of which he lived at his

father’s place in Lincolnshire to escape the plague, can be referred to as his “golden

period,” in which he laid the foundation of his discoveries in the calculus, in mech-

anics, and in optics. His most famous work is the Philosophiae naturalis principia
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mathematica (London, 1687), which contains his celestial mechanics based on his law of
universal attraction. Most of his other works were published many years after they were
written. Among them is his algebra, the Arithmetica universalis, edited by William Whiston
(Cambridge, 1707), written as the text of lectures between c. 1673 and c. 1683. We use here
the English translation, Universal arithmetic

k

(London, 1720). On Newton’s work see further
H. W. Turnbull, The mathematical discoveries of Newton (Blackie, Glasgow, 1945).
The Arithmetica contains methods of solving equations in 77 problems, investigations on

the roots, including the search for divisors of polynomials, common divisors of two poly-
nomials, and a formulation of Descartes’s sign rule. We present here a section (pp. 202-207)
in which Newton deals with symmetric functions of the roots (see Selection II.6 on Girard)
and then shows how to find upper limits of the roots. He uses the term “affirmative” for
what we call positive, as opposed to “negative,” “dimension” for our degree, “quantity”
of a term for its coefficient, “rectangle” for the product of two terms, and “content” for
that of more than two terms.

Newton has first shown that in the equation (in our notation)

xn + a1x
n ~ x + a2x

n ~ 2 + • • = 0

-a 1 is the sum of the roots, a2 “the aggregate of the rectangles of each two of the roots,”
and so forth. Then he continues (p. 202), writing p = -oq, q = ~a2 ,

and so on (we have
somewhat modernized the spelling)

:

From the generation of equations it is evident, that the known quantity of the

second term of the equation, if its sign he changed, is equal to the aggregate of all the
roots under their proper signs; and that of the third term, equal to the aggregate of
the rectangles of each two of the roots; that of the fourth, if its sign be changed, is

equal to the aggregate of the contents under each three of the roots; that of the fifth
is equal to the aggregate of the contents under each four, and so on ad infinitum.
Let us assume x = a, x = h, x = —c,x = d, etc. or x — a = 0, x — b = 0,

x + c = 0
,
x-d = 0 , and by the continual multiplication of these we may

generate equations, as above. Now, by multiplying x — a by x - b there will be
— a

produced the equation xx x + ab = 0; where the known quantity of the

second term, if its signs are changed, viz. a + b, is the sum of the two roots a and
b, and the known quantity of the third term is the only rectangle contained under
both. Again, by multiplying this equation by x + c, there will be produced the

— a +ab
cubic equation a;

3 — b xx —acx + abc = 0, where the known quantity ofthe second
+ c — be

term having its signs changed, viz. a + b - c, is the sum of the roots a, and b, and
— c, the known quantity of the third term ab — ac — be is the sum of the rec-
tangles under each two of the roots a and b, a and -c, b and -c; and the known
quantity of the fourth term under its sign changed, —abc, is the only content
generated by the continual multiplication of all the roots, a by b into -c.
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Moreover, by multiplying that cubic equation by x — d, there will be produced

this biquadratic one;

— a

+ ab

— ac + abc

-b — be — abd

X

3

XX

+ e + ad + bcd

-d + bd + acd

— cd

Where the known quantity of the second term under its signs changed, viz.

a + b — c + d, is the sum of all the roots; that of the third, ab — ac — be + ad

— bd — cd, is the sum of the rectangles under every two roots; that of the fourth,

its signs being changed, —abc + abd — bed — acd, is the sum of the contents

under each ternary; that of the fifth, —abed, is the only content under them all.

And hence we first infer, that of any equation whose terms involve neither surds

nor fractions all the rational roots, and the rectangles of any two of the roots, or

the contents of any three or more of them, are some of the integral divisors of the

last term; 1 and therefore when it is evident that no divisor of the last term is

either a root of the equation, or rectangle, or content of two or more roots, it

will also be evident that there is no root, or rectangle, or content of roots, except

what is surd.

Let us suppose now, that the known quantities of the terms of any equation

under their signs changed, are p, q, r, s, t, v, etc. viz. that of the second p, that

of the third q, of the fourth r, of the fifth s, and so on. And the signs of the

terms being rightly observed, make p = a, pa + 2q = b, pb + qa + 3r = c,

pc + qb + ra + 4s = d, pd + qc + rb + sa + 5t = e, pe + qd + re + sb + ta

+ 6v = f
2 and so on in infinitum, observing the series of the progression. And

a will be the sum of the roots, b the sum of the squares of each of the roots, c the

sum of the cubes, d the sum of the biquadrates, e the sum of the quadrato-

cubes, / the sum of the cubo-cubes, and so on. As in the equation xi — x3

— 1 9xx + 49a; — 30 = 0, where the known quantity of the second term is — 1,

of the third —19, of the fourth +49, of the fifth —30; you must make 1 = p,

19 = q, —49 = r, 30 = s. And there will thence arise a = (p =) 1 ,
b =

{pa + 2q = 1 + 38 =) 39, c = {pb + qa + 3r = 39 + 19 — 147 =) —89,

1 This sentence has been translated from the original Latin text, since the English text is

garbled. The term surd is usually used for incommensurable roots of a commensurable

number, as V2, but also means any nonrational number; “quantities partly rationall and
partly surde,” writes Recorde in his Pathewaie to knowledge (London, 1551). The term,

meaning deaf or mute, is a Latin translation of an Arabic translation of the Greek term
alogos, meaning irrational.

2 These sums are known as sums of Newton, although they were known to Girard

(Selection II. 6). The general formulas for the equation a0x
n + cqx" -1 + a2x

n ~ 2 + ••• +
an - xx + an = 0 are ao^i + a 1 = 0, a0s2 4- ci 1s 1 + 2a2 = 0, a0s3 + a 1s2 + a2s 1 + 3a3 =
0, . . . , a0sn + Gq.sn _ i + ci2sn - 2 + • • • + nan = 0 ; a0sn + k + cqsn + & _ 1 + «25n + k - 2 + • •

• +
ansk = 0 for k = 0, 1 , 2, ...

.

Here s
t

is the sum of the ith powers of the roots. They go in essential back to C.

Maclaurin, A treatise of algebra (London, 1748), Part II, 141-143.
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d = (pc + qb + ra + 4s = -89 + 741 - 49 + 120 =) 723. Wherefore the

sum of the roots will be 1, the sum of the squares of the roots 39, the sum of the

cubes —89, and the sum of the biquadrates 723, viz. the roots of that equation

are 1, 2, 3, and -5, and the sum of these 14-2 + 3 — 5 is 1; the sum of the

squares, 1 + 4 + 9 + 25, is 39; the sum of the cubes, 1 + 8 + 27 — 125, is

— 89; and the sum of the biquadrates, 1 + 16 + 81 + 625, is 723.

OF THE LIMITS OF EQUATIONS.

And hence are collected the limits between which the roots of the equation shall

consist, if none of them is impossible. For when the squares of all the roots are

affirmative, the sum of the squares will be affirmative, and by the same argu-

ment, the sum of the biquadrates of all the roots will be greater than the bi-

quadrate of the greatest root, and the sum of the cubo-cubes greater than the

cubo-cube of the greatest root.

Wherefore, if you desire the limit which no roots can pass, seek the sum of the

squares of the roots, and extract its square root. For this root will be greater than the

greatest root of the equation. But you will come nearer the greatest root if you seek

the sum of the biquadrates, and extract its biquadratic root; and yet nearer, if you
seek the sum of the cubo-cubes, and extract its cubo-cubical root; and so on in

infinitum. 3

Thus, in the precedent equation, the square root of the sum of the squares of

the roots, or V
7

39, is 6.; nearly, and 6J is farther distant from 0 than any of the

roots 1, 2, 3, -5. But the biquadratic root of the sum of the biquadrates of the

roots, viz. V723, which is 5j nearly, comes nearer to the root that is most
remote from nothing, viz. —5.

Rule II. If, between the sum of the squares and the sum of the biquadrates

of the roots you find a mean proportional, that will be a little greater than the

sum of the cubes of the roots connected under affirmative signs. And hence, the

half sum of this mean proportional, and of the sum of the cubes collected under
their proper signs, found as before, will be greater than the sum of the cubes of

the affirmative roots, and the half difference greater than the sum of the cubes
of the negative roots.

4

And consequently, the greatest of the affirmative roots will be less than the cube

root of that half sum, and the greatest of the negative roots less than the cube root of
that semi-difference.

Thus, in the precedent equation, a mean proportional between the sum of the

squares of the roots 39, and the sum of the biquadrates 723, is nearly 168. The
sum of the cubes under their proper signs was, as above, —89, the half sum of

3 If xu is the largest root in absolute value, then for any positive integer m \xu \
< T' s2m ,

and $

8

2m — \xu \

will tend to zero with increasing m. The proof follows from the fact that
s2m is always positive.

4 Let 83 — s3 — f3 ,
where s3 is the sum of the third powers of the positive roots,

and — s3 that of the negative roots. Then Vs2s4 > s3 + s3 , + S3 - S3 ) > s3 ,

i(^s2si — £3 + S3) > 83.
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this and 168 is 891, the semi-difference 1281. The cube root of the former, which

is about 31, is greater than the greatest of the affirmative roots 3. The cube root

of the latter, which is 5^- nearly, is greater than the negative root — 5. By which
example it may be seen how near you may come this way to the root, where
there is only one negative root or one affirmative one.

Rule III. And yet you might come nearer still, if you found a mean proportional

between the sum of the biquadrates of the roots and the sum of the cubo-cubes,

and if from the semi-sum and semi -difference of this, and of the sum of the

quadrato-cube of the roots, you extracted the quadrato-cubical roots. For the

quadrato-cubical root of the semi-sum would be greater than the greatest

affirmative root, and the quadrato-cubic root of the semi-difference would be

greater than the greatest negative root, but by a less excess than before. Since

therefore any root, by augmenting or diminishing all the roots, may be made
the least, and then the least converted into the greatest, and afterwards all

besides the greatest be made negative, it is manifest how any root desired may
be found nearly.

Rule IV. If all the roots except two are negative, those two may he both together

found this way.

The sum of the cubes of those two roots being found according to the pre-

cedent method, as also the sum of the quadrato-cubes, and the sum of the

quadrato-quadrato-cubes of all the roots: between the two latter sums seek a

mean proportional, and that will be the difference between the sum of the cubo-

cubes of the affirmative roots, and the sum of the cubo-cubes of the negative

roots nearly; and consequently, the half sum of this mean proportional, and of

the sum of the cubo-cubes of all the roots, will be the sum of the cubo-cubes of

the affirmative roots, and the semi-difference will be the sum of the cubo-cubes

of the negative roots. Having therefore both the sum of the cubes, and also the

sum of the cubo-cubes of the two affirmative roots, from the double of the latter

sum subtract the square of the former sum, and the square root of the remainder
will be the difference of the cubes of the two roots. And having both the sum
and difference of the cubes, you will have the cubes themselves. Extract their

cube roots, and you will nearly have the two affirmative roots of the equation.

And if in higher powers you should do the like, you will have the roots yet more
nearly. But these limitations, by reason of the difficulty of the calculus, are of

less use, and extend only to those equations that have no imaginary roots.

Wherefore I will now shew how to find the limits another way, which is more
easy, and extends to all equations.

Rule V. Multiply every term of the equation by the number of its dimensions,

and divide the product by the root of the equation. Then again multiply every one of

the terms that come out by a number less by unity than before, and divide the

product by the root of the equation. And so go on, by always multiplying by numbers
less by unity than before, and dividing the product by the root, till at length all the

terms are destroyed, whose signs are different from the sign of the first or highest

term, except the last. And that number will be greater than any affirmative root;

which being writ in the terms that come out for the root, makes the aggregate of those
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which were each time produced by multiplication to have always the same sign with

the first or highest term of the equation ,

5

As if there was proposed the equation x5 - 2z4 - 10a;3 + 30xx + 63a;

5 4 3 2 1 0- 120 = 0. I first multiply this thus; x5 - 2xi - 10a;
3 + 30xx + 63a; - 120.

4 3
Then again multiply the terms that come out divided by x, thus; 5a:

4 - 8a;
3

2 1 0

— 30xx + 60a; + 63, and dividing the terms that come out again by x, there

comes out 20a;
3 — 2kxx — 60a; + 60; which, to lessen them, I divide by the

greatest common divisor 4, and you have 5a;
3 - 6xx - 15a; + 15. These being

again multiplied by the progression 3, 2, 1,0, and divided by x, become
15xx - 12x - 15, and again divided by 3 become 5xx - 4a; - 5. And these

multiplied by the progression 2, 1, 0, and divided by 2a; become 5a; - 2. Now,
since the highest term of the equation xs

is affirmative, I try what number writ
in these products for x will cause them all to be affirmative. And by trying 1, you
have 5a; — 2 = 3 affirmative; but 5xx - 4a; — 5, you have —4 negative.

Wherefore the limit will be greater than 1 . I therefore try some greater number,
as 2. And substituting 2 in each for x, they become

5a; —2 = 8

5xx — 4a: — 5 = 7

5a:
3 — Qxx — 15x + 15 = 1

5a;
4 - 8a:

3 - 30xx + 60a: + 63 = 79

xs - 2a;
4 - 10a;

3 + 30xx + 63a; - 120 = 46

Wherefore, since the numbers that come out 8 . 7 . 1 . 79 . 46 . are all affirmative,

the number 2 will be greater than the greatest of the affirmative roots. In like

manner, if I would find the limit of the negative roots, I try negative numbers.
Or that which is all one, I change the signs of every other term, and try affirma-

tive ones. But having changed the signs of every other term, the quantities in

which the numbers are to be substituted, will become

5a; +2
5xx + 4a; — 5

5a;
3 + 6xx — 15a; — 15

5a;
4 + 8a;

3 — 30xx — 60a; + 63

xs + 2a:
4 - 10a;

3 - 30a;a; + 63a; + 120

Out of these I choose some quantity wherein the negative terms seem most
prevalent; suppose 5a;

4 + 8a;
3 - 30xx - 60a; + 63, and here substituting for a;

the numbers 1 and 2, there come out the negative numbers —14 and —33.
Whence the limit will be greater than -2. But substituting the number 3, there

5 This rule is known as Newton’s rule, and can be expressed in modern language as follows;
tt f(z) = a0z

n + an _ 2z
n 1 -{- a2z

n 2 + + «„ = 0, aQ > 0, then every number z = L for
which /(z) and its derivatives J'(z), f(z), 1

(z) are positive is an upper limit for the
positive roots of /(z) = 0. The rule can be proved as a corollary to the theorem of Fourier
(1831; also called after Budan); see, for instance W. S. Burnside and A. W. Panton, The
theory of equations (3rd ed.; Hodges, Figgis and Co., Dublin, 1892), 170, 182.



EULER. THE FUNDAMENTAL THEOREM OF ALGEBRA 10
|

99

comes out the affirmative number 234. And in like manner in the other quanti-

ties, by substituting the number 3 for x, there comes out always an affirmative

number, which may be seen by bare inspection. Wherefore the number —3 is

greater than all the negative roots. And so you have the limits 2 and —3,

between which are all the roots.

10 EULER. THE FUNDAMENTAL THEOREM OF ALGEBRA

We have seen how Girard, in 1629, formulated the principle that an algebraic equation of

degree n has n roots. The first attempt to prove it was made by Jean Le Rond D’Alembert

(1717-1783), after 1759 permanent secretary of the French Academy. It can be found in his

“Recherches sur le calcul integral,” Hiatoire de VAcodemie Royale, Berlin, 1746 (1748),

102-224. It is from this attempt that the theorem is still known as the theorem of D’Alem-
bert. The theorem had received a new importance in those days because of its application

to the integration of rational fractions by means of partial functions. In D’Alembert’s words:

"In order to reduce in general a differential rational function to the quadrature of the

hyperbola or to that of the circle, it is necessary, according to the method of M. Bernoulli

(Acad. Paris 1702), 1 to show that every rational polynomial, without a divisor composed of

a variable * and of constants, can always be divided, when it is of even degree, into trinomial

factors xx + fx + g, xx + hx + i, etc., of which all coefficients/, g, h, i, are real. It is clear

that this difficulty affects only the polynomial that cannot be divided by any binomial,

x + a, x + b, etc., because we can always by division reduce to zero all the real binomials,

if there are any, and it can easily be seen that the products of these binomials will give real

factors xx + fx + g.”

D’Alembert’s proof, which used geometrical arguments, was not very convincing. As a

matter of fact, D’Alembert did not even prove the existence of a root, but only showed the

form the root takes, and for this adds to his proof a dissertation on complex numbers and
complex functions, something fairly new at that time. The proof given at the same time by
D’Alembert’s friend Euler was different, and, despite certain weaknesses, 2 more appealing.

The proof can be found under the title “Recherches sur les racines imaginaires des equa-

tions,” Histoire de VAcademie Royale, Berlin, 1747 (1749), 222-228; Opera omnia, ser. I,

vol. 6, 78- 147. It was a purely algebraic proof. First Euler shows that when a root

x + yV— 1 exists there is also one of the form x — yV — 1, so that there must be a factor

of the form xx + px + q. After an example of howr to decompose an equation of the fourth

degree into two quadratic factors, Euler proves three theorems: (1) that an equation of odd

1 Johann Bernoulli, “Solution d’un problems eoncernant le calcul integral,” Histoire de
I'Academie Royale des Sciences, Paris, 1702, 399-410; 'Opera omnia, I, 393-400. Here Ber-
noulli shows how to integrate pdx/q, when p and q are polynomials in x. He first reduces by
division the degree of p to that below the degree of q, and then reduces the differential to a
sum of terms of the form adxl(x + /). This gives, in his words, a sum of logarithmic terms,
or quadratures of the hyperbola, which are either real or imaginary, also expressible as

circular arcs or sectors. Leibniz, in the Acta Eruditorum of 1702, had indicated a similar

procedure, but Bernoulli’s work was more complete; see Leibniz, Mathematische Schriften,

part 2, vol. 1 (1858), 350-361.
2 These weaknesses were brought out by Gauss in his dissertation (1799); see Selection

11.12.
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degree has at least one root, (2) that one of even degree has either no real roots or pairs of

such roots, and (3) that an equation of even degree with negative absolute term has at least

one positive and one negative root. All three theorems are demonstrated geometrically.

Then follows:

Theorem 4. Every equation of the fourth degree
,
as

a;
4 + Ax3 + Bx2 + Cx + D = 0,

can always he decomposed into two real factors of the second degree.

Demonstration. It is known that by setting x = y — \A we can change this

equation into another one of the same degree without the second term, and,

since this transformation can always be performed, let us suppose that in the

proposed equation the second term is already missing, and that we have to

resolve this equation:

xi + Bx2 + Cx + D = 0,

into two real factors of the second degree. It is clear that these factors will be

of the form

(xx + ux + a)(xx — ux + /S) = 0.

If now we compare this product with the proposed equation, we shall

find

B = a + 1
8 — uu, G = (|8 — a)u, D = a/3,

from which we derive

Q
a + P = B + UU, B — a = -,

U

hence

C C
2/3 = uu + B H— and 2a = uu + B ,

u u

and since we have 4a/S = 4D we obtain the equation

CG
u* + 2Buu + BB - = 4D

uu

u6 + 2Bu* + {BB - 4D)uu -(7(7 = 0,
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from which the value of u must be found. And since the absolute term -GC is

essentially negative, we have shown that this equation has at least two real

roots. When we take one of them as u, then the values of a and £ will also be real,

and hence the two supposed factors of the second degree xx + ux + a and
xx — ua + will be real. Q.E.D.

Among the corollaries to Theorem 4 is the statement that the resolution into real factors

is now also proved for the fifth degree, and Scholium If points out that, if the roots of the

given fourth-degree equation are a, b, c, d, then the sixth-degree equation in u, u being the

sum of two roots of the given equation, will have the six roots a + b, a + c, a + d, c + d,

b + d, b + c. Since a + b + c + d = 0, we can write for u the values p, q, r, —p, —q, — r,

and the equation in u becomes

(uu — pp)(uu — qq)(uu — rr) = 0.

Theorem 5. Every equation of degree 8 can always be resolved into two real factors

of the fourth degree.

The proof follows the same reasoning as before. First the term in x1
is eliminated, so that

the two supposed factors can be written a:
4 — ux3 + ax2 + fix + y = 0 and x4 + ux3

+ 8x2 + ex + £ = 0. Since u expresses the sum of four roots of the eighth-degree equation,

it can have
^ 9

~ =70 values, and it will satisfy an equation of the form

0 = (uu — pp)(uu — qq)(uu — rr)(uu — ««),

with 35 factors. The absolute term is negative, and the reasoning continues as before.

Corollary 2 states that the theorem is also proved for degree 9, and Corollary 3 that it is

also proved for degrees 6 and 7, since we have only to multiply such an equation by xx or x
to obtain an equation of degree 8. Scholium II tries to make certain that not only u, but
also the other coefficients a,

ft, y, . . . are real, a reasoning to which Lagrange and Gauss
later objected. Euler continues in Theorem 6 with similar proofs for equations of degree 16,

and then, in general:

Theorem 7. Every equation of which the degree is a power of the binary, as 2 n

(n being a number greater than 1), can be resolved into two factors of degree 2n ~ 1
.
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The proof, similar to the previous ones, leads to an equation in u of degree

2n 2 n - 1 2n - 2 2" - 3 2n_1 + 1

- 21-12"- 1 _ 1

2

n_1 - 22"" 1 - 3 1
’

which is “oddly even” [impairement pair], that is, §A is odd, so that the absolute term of

the equation in u is again negative.

Scholium. We thus have here a complete demonstration of the proposition,

which is usually presupposed in analysis, especially in the integral calculus, and

which claims that every rational function of a variable x, as

xm + Axm ~ 1 + Bxm ~ 2 + etc.

can always be resolved into real factors, either simple ones of the form x + p,

or double ones of the form xx + px + q.

Euler believes that the proof is solid (“ je crois qu’on n’y trouvera rien a redire”), but to

strengthen the argument he gives extra proofs for degrees 6, 4« + 2, 8n -f 4, . .
.

,

2n
p,

p an odd number. In the first and second cases he shows that there exists at least one real

factor of the second degree, in the case 8m + 4 at least one factor of the fourth degree, and

in the case 2 n
p a factor of degree 2n ~ 1

.

The second part of the paper proves that all nonreal roots are of the form M + NV — 1

,

M and N being real. This implies extensive discussion of all operations with complex num-
bers, including the raising to imaginary powers, the taking of logarithms, and the formation

of trigonometric functions of complex angles. This section could enter straight into any

modern elementary text on complex numbers.

11 LAGRANGE. ON THE GENERAL THEORY OF EQUATIONS

Joseph Louis Lagrange (1736-1813), born in Turin of partly French ancestry, became

professor of mathematics at the Royal Artillery School of Turin before he was twenty; from

1766 to 1787 he was Academician in Berlin (as successor to Euler), and from 1787 to his

death Academician and professor of mathematics in Paris. His fundamental work on

algebra dates from his Berlin period. Indeed, his paper, “Reflexions sur la resolution

algebrique des equations,” Nouveaux Memoires de I’Academie Royale, Berlin, 1770 (1772),

134-215; 1771 (1773), 138-254; Oeuvres (Gauthier- Villars, Paris), III (1869), 205-421, opens

a new period in the study of the theory of equations. By relating the general nature of the

roots of an equation to the theory of permutations Lagrange introduces the point of view

which in the next century would lead to the theory of Galois. After a methodical investiga-

tion of the existing methods of solution of quadratic, cubic, and biquadratic equations, such

as those of Cardan, Ferrari, and Euler, and of equations of higher degree, such as that of
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Tschirnhaus, 1 Lagrange came to the conclusion that the general structure of the solution of

an equation of degree y is determined by certain equations called resolvents (reduites), of

which the degree is either 1 • 2 • 3 • y or a divisor of this number. Because of the length of

the paper we can give only the sections that present the core of Lagrange’s theory.

Lagrange takes f(x, y, z, . . .) as a rational function of x, y, z, . . .

2 and x', x"
,
x'"

,
... as

the roots of the equation xu + mxW_1 + nxu ~ 2 + pxu ~ a + • • • = 0.

90. To begin with the simplest cases, let us suppose that the given equation

is only of the second degree, and that we ask for the equation by which such a

function /(a:', x") will be determined. 2
I write t = f(x', x") so that t will be the

unknown of the required equation, and, as x' and x" are both determined by the

same equation,

x2 + mx + n = 0,

I write, for greater generality, x instead of x' and y instead of x"

,

and so I obtain

the equation

< - /(*> V) = 0
,

and our task is to eliminate * and y by means of the two equations

x2 + mx + n = 0, y
2

-f my + n = 0.

Let t - f(x, y) = X; then we shall first eliminate x from the equation X = 0 by
means of the equation x2 + mx + n = 0, which will give an equation that I

shall denote by Y = a, and in which Y will be a rational function of the quanti-

ties t, m, n, and y. Then we shall eliminate y from this last equation by means of

the other equation y
2 + my + n = 0, and we shall have the final equation

T — c, where T w ill be a rational function of t, m, n.

I observe now that, since the roots of the equation x2 + mx + n = 0 are x'

and x "
,
if we denote by X' and X" the values of X that result from the sub-

stitution of these roots for x, then we shall have . .

.

Y = X'X",

1 Walter von Tschirnhaus (1651-1708), “Methodus auferendi omnes terminas intermedios
ex datu aequatio meo,” Acta Eruditorum (1683), 204—207, tried to reduce an equation of
degree n : xn

-f- a 1x
n 1 + • • • + an = 0 with roots aq, . . ., xn by a substitution y =

<p(x) = a0 -f- oqx + •
• + an ^ 1 x

n ~ 1 to the form y
n — kn = 0. He formed the equation

<p(y) = (y - Vi)(y - y2 ) (y - yn ) = y
n + M"" 1 + • + &„,

where yt
= <p(x

t ), and tried to make as many as possible of the 6, zero by selecting the a, in
an appropriate way. See W. S. Burnside and A. W. Panton, The theory of equations (3rd ed.;
Hodges, Figgis and Co., Dublin, 1892), 424—429.

2 Lagrange writes f[(x)(y)(z) ],/[(x')(x")].



104
|

II ALGEBRA

and similarly, since x' and x" are also the roots of the equation y
2 + my + n = 0,

if we denote by Y' and Y" the values of Y that result from the substitution of

x' and x" for y, we shall have

T = Y'Y".

Now we have X' = t — fix', y), X" = t — (f(x", y)\ hence

Y = [t - fix', y)] x [t - fix", y)],

and therefore

Y' = [t - fix', x')} x [t - f(x”, x')].

Y" = [t- f(x', x")] x[t- f(x", *")],

so that we obtain

T — \t — fix', x")] x[t- fix", x')] x[t- fix', x')] x[t- fix", x")}.

If we now consider the function3
fix

2
)
write t — fix

2
) = and eliminate x from

the equation £ = 0 by means of the equation x2 + mx + n = 0, then we shall

have the equation 9 = 0, where 9 will be a rational function of t and m, n.

Denoting by £' and the values of £ that result from the substitution of x'
,
x"

for x, we shall have

9 = f

But we have

? = *- /(*', *'), r = * - fix-, x").

hence

6 = [t - fix', x')] x [t - fix", x")].

Write

& =\t - fix', x")] x [t - fix", x')],

and we shall have T = 00, or 0 = Tj9, so that, since T and 6 are rational

functions of t, m, and n, it is clear that © will also be a rational function of t, m, n.

The equation T = 0 can therefore be decomposed into two, 0=0 and 9 = 0,

and, since the first is the one that gives the value offix
2
), we see that the deter-

mination of the proposed function fix', x") will depend uniquely on the other

equation, 0=0.

Lagrange writes f[{x)
2
] for f[{x), (a;)].
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Hence, in order to find this equation 0 = 0 that solves the problem, we
have only to eliminate from the equations

< - f(x, y) — 0, t = f(x
2
) = 0

the unknowns x and y by means of the equations x2 + mx + n = 0,

y
2 + my + n = 0, and, denoting by T = 0 and 9 = 0 the resulting equations,

we shall have immediately 0 = Tj9. i

91. We see from the expression for 0 that the equation 0 = 0, which serves

to determine the value of the function /(a:', x"), is of the second degree, and that

its two roots are f(x', x") and f(x", x'). Indeed, as the roots x’ and x" are deter-

mined in the same way by the equation x2 + mx + n = 0, it is clear that the

two functions /(a;', x") and f(x", x'), which differ from each other only by the

interchange of the roots x' and x"
,
must also be determined by the same

equation.

If the function /(a;', x") were of the form f(x", x’), so that

/(*', *') = f(x", x
1

),

then we would have

0 = [t -f{x',x")f-

hence the equation 0 = 0 would be simply

t - f(x', x") = 0,

from which we see that the function in question would in this case be determined
by a linear equation, and hence will be given by a rational expression in m and n.

92-98. This same method is now applied to a cubic equation, x3 + mx2 + nx + p = 0,

where the function/ (x', x"
, x!") has to be determined. There are six permutations of a;', x" , x

m
.

The corresponding equation T = 0 will be of the form T = Qdd^^. T will be a rational

function in t, m, n,p. 0 = [t - f(x', x", x
m
)] x[f- f(x", x', x

m
)] x [t - f(x

m
, x", a;')] x

[* ~ /(*', *')] x [t - f(x", x', x")] x [t - f(x", xT, a;')]; 9 = [t - f(x'
3
)] x [t - f(x"

3
)] x

[t - /(a;"3 )]; 9, = [t - f{x'
2

, *')] x • • x [f - f(x"
2

, **)]. To find 0=0 we must

4 As a simple example of Lagrange’s method, take x 2 + mx + n = 0 and f(x', x“) =
x' + 2x". Then

X = t — x — 2y,
T = (t

2 + mt - 3n) 2 + 2m(t2 + mt - 3n)(2t + 3n) + 4n(2« + 3n)2
,

Y = (t - 2y)
2 + m(t — 2y) + n,

f = < — 3a:,

9 = t
2 + 3mt + 9n,

0 = {t — x" — 2x')(t — x' — 2x“) = t
2 + 3mt + (2m2 + n).
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eliminate the unknowns x, y, z from the five equations t — f(z, y, z) = 0, t — f{x
2

, y) = 0,

t — /(*, y
2
) = 0, t — f(x, y, z)

—
0, t — f(x

a
)
= 0 with the aid of the three equations

x

3

+ mx2 + nx + p = 0 and the similar ones for y and z. Then writing the resulting

equations as T = 0, T 1 = 0, T2 = 0, T3 = 0, 6 = 0, we find T 1 = 89lt T2 = 692 ,
T3 =

ee3 ,
t = ®eex e2 e3 , hence 0 = T82\t

xt2t3 .

This is a long and painful method, and for equations of higher degree it becomes even

more so. But the method shows the nature of the resolvent 0=0. The degree of 0 in the

case of an equation of degree y will be that of the number of permutations of y elements,

hence 1 • 2 • 3 •

• y = v will always be a rational function of t and the coefficients n, to, p, . . .

of the proposed equations, hence also the coefficients of t in 0, which can therefore also be

found directly. Here Cramer’s book and Waring’s Meditationes algebraicae are quoted. 5

When f(x', x"

,

. . . )
is unchanged under certain permutations of the x'

,
x"

,
. . ., the degree

of 0 = 0 will go down, from tt to 7r/2, 7t/3, etc. When / contains only A of the y roots, the

1 • 2 • 3 •

degree of 0 = 0 will, in general, be - ——— •

1 • 2 3 • •
• (fi

— A)

99. From all that we have shown it follows therefore, in general, (1) that all

functions of the roots x' x"
,
x'" , ... of the same equation that are alike [fonctions

semblables, that is, invariant under the same and only under the same permuta-

tions of the roots] are necessarily of the same degree, (2) that this degree will be

equal to the number 1-2-3 y (y being the degree of the given equation), or of

a factor
[
sous-multiple

]
of this number; (3) that in order to find directly the

simplest equation 6 = 0 by which an arbitrary given function of x', x"
,
x'", . . .

can be determined we have only to look for the different values that this function

can receive under the permutations of the quantities x'
,
x", x'", . . . among them-

selves. Then, taking these values for the roots of the required equations, we can

determine by known methods the coefficients of this equation.

100. If we now have found, either by the solution of the equation 9 = 0 or

otherwise, the value of a given function of the roots x'
,
x"

, x'“

,

. . . ,
then I say

that the value of any other function of these same roots can be found, and this,

in general, by means of a simple linear equation, with the exception of some
particular cases which require an equation of second degree, or of the third

degree, etc. This problem seems to me one of the most important of the theory of

equations, and the general Solution that we shall give of it will serve to throw a

new light on this part of Algebra.

Expressions for y in t when the two functions denoted by t and y are alike are discussed in

Arts. 100-102. An example is given for xi + mx3 + nx2 + px + q = 0, which is supposed

5 For Cramer’s book see Selection III. 10. As to Edward Waring (1734-1798), the Lucasian
professor of mathematics in Cambridge, his Meditationes algebricae (Cambridge, 1770) con-
tains many theorems on the roots, especially also imaginary roots, of algebraic equations.
Here he published (without proof) the theorem that carries his name: “Every integer is

either a cube or the sum of 2, 3, 4, 5, 6, 7, 8 or 9 cubes; either a biquadrate, or the sum of

2, 3, etc. or 19 biquadrates.” See on Waring also Selection 1. 11, note 5.
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to be divisible by x2 + fx + g = 0. Then g = (p - nf + mf2 - /
3)/(m - 2/) gives g

expressed rationally in /. But if / = m/2, p = mnj'2 - m3
/8, then this value of / gives

g = 0/0, and g must be found from

g
2 ~ (n - m2

/4)<7 + q = 0.

This is exactly the case where the valuef = m/2 is a double root of the equation for/, which
is of the sixth degree. In 103 the case is discussed in which the functions t and y are no
longer alike. The result is summarized in the following theorems.

104. Therefore:

1. If we have two arbitrary functions t and y of the roots x'
, x", x'"

, ... of the

equation

xu + mxu 1 + nxu ~ 2 + • = 0,

and if these functions are such that all the permutations of the roots x' x"
,
x'"

,
. . .

that make the function y vary at the same time make the function t vary also,

then we can, generally speaking, express the value of y in t and in m,n,p,...
by a rational expression, such that when a value of t is known the corresponding

value of y is also known; we say generally speaking since if it happens that the

known value of t is a double, or triple, etc. root of the equation in t, in that case

the corresponding value of y will depend on a quadratic, or cubic, etc. equation,

of which all the coefficients will be rational functions of t and of m,n, p, . . ..

2. If the functions t and y are such that the function t maintains the same
value under permutations that make the function y vary, then we cannot find

the value of y in t and in m, n, p except by means of an equation of the second
degree, if to one value of t there correspond two different values of y, or of the

third degree, if to one value of t there correspond three different values of y, and so

on. The coefficients of these equations in y will be, generally speaking, rational

functions of t and of m, n, p, . .

.

such that when a value of t is given we shall

have y by means of a simple solution of an equation of the second or of the third

degree, etc. But it may happen that the known value of t is a double or triple, etc.

root of the equation in <; in that case the coefficients of the equations in question

will still depend themselves on an equation of the second or of the third degree,

etc.

From this we can derive the necessary conditions for the determination of the

values of the roots x '
,
x", x'", . .

.

themselves with the aid of those of an arbitrary

function of these roots, since we have for this purpose only to take the simple

root x in the place of the function y, and to apply to this case the preceding

conclusions.
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In Arts. 105-108 applications are given to equations of the third and fourth degree. Then:

109. These observations give, if I mistake not, the true principles of the

solution of equations and the most suitable analysis to guide us to it: all is

reduced, as we see, to a kind of calculus of combinations, by which one finds

a priori the results that one might expect. It would be fitting to apply these

principles to equations of the fifth and higher degrees, of which the solution is

at present unknown; but this application requires too large a number of inves-

tigations and combinations. Moreover, success remains very doubtful, so that

we shall not for the present pursue this work. However, we hope to return to it

at some other time, and we shall here be satisfied in the exposition of the

foundations of a theory which seems to us new and general ...
6

115. We add an example, taken from geometry. We take the well-known

problem in which one draws through the corner D of a square ACI)B [Fig. 1] a

straight lineMN in such a way that the part MN of it contained between the two

adjacent sides AC, AB of the square, continued to M, N

,

has a given length.

Calling a the side of the square and b the given length of the line MN, we take,

in order to find the position of that line, the unknown CM = x\ then MD =

V

x

2 + a2
,
and the two similar triangles MCD, MAN will give immediately

x : Va2 + x2 = (a + x) : MN = (a + x) : b;

6 For further understanding of Lagrange’s ideas in the framework of modern algebra,

consult A. Speiser, Theorie der Gruppen endlicher Ordnung (Springer, Berlin, 1927); J. Vuil-

lemin, La philosophic de Valgkbre de Lagrange , Conferences du Palais de la Decouverte D 71

(Paris, 1960); I. Bachmacova, “Le theoreme fundamental de l’algebre et la construction

des corps algebriques,” Archives Internationales d'histoire des Sciences 13 (1960), 211-222.
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from which we derive the equation

bx = (a + x)Va2 + x2
,

which, after removal of the radical and arrangement in order of x, becomes

z4 + 2ax3 + (2a2 - b2)x2 + 2a3
a: + a4 = 0,

which is, as we see, of the fourth degree.

Let us now see if, according to the vary nature of the problem, we cannot
find some relation between the roots of this equation that will make it possible

to decompose it into equations of lower degree.

To achieve this I observe that one can actually draw through the point D
four lines that fulfill the conditions of the problem; they are the lines MN,
M N

,
M N", such that the roots of the preceding equation will be the

lines CM, CM '
, CM", CM'”

,
of which the last two, as we see, are negative.

Let us call the lines x'
,
x"

,
x'”

,
xlv

. Then because of the similarity of triangles

MDC, DN

B

we have:

MC : CD = DB -.BN
;

but, since M'N' must be equal to MN and CD = DB, it is easy to see that also

M'C = BN. Thus we have the proportion

x'x" — a2 = 0.

We could conclude, by the principle of sufficient reason, that such a relation

must also exist between the two other roots x'"
,
xlv

. but, if we wish to convince
ourselves of this relation a posteriori, we have only to consider that because of
M"N" = N"'M"' we also must have CM'" = BN”, so that then, because of the
similarity of the triangles DCM", DBN", we have CM": CD = DB : BN" =
DB : CM "

,
that is,

hence

x"':a = a : xiv
,

x'"x
iv — a2 = 0.

Since, therefore we have two similar equations, one between x'", xlv
,
and since

these equations remain the same on changing *' into x" and x” into ziv
,
it follows

from principles established before that the equation of the fourth degree, derived
above, will necessarily be decomposable into two equations of the second degree,

such as

x2 - f’x + g' = 0,

x2 - f"x + g" = 0,
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where/' and/" will be roots of an equation of the second degree, just like g' and
g", but, since g' = x'x" and g” = x

mxiv
,
we will have g' = g" = a2

. Hence the

two factors of the equation in question will be

x2 - f'x + a2 = 0,

x2 — f'x + a2 — 0.

Multiplying the two we shall have

- (/' + /'V + (/'/" + 2a2)x2 - a2(f + f")x + a4 = 0,

hence

/' + f" = -2a, /'/" + 2a2 = 2a2 - 6 2
;

therefore

f'S" = -b2
,

so that the equation which has /' and/" as its roots will be

/
2 + 2a/ - b2 = 0.

Finally, it is clear that if in the equation of the fourth degree in x we put x = az

we shall have an equation in x of the type called reciprocal
,
in which we can

therefore eliminate all odd powers of the unknown by making z = (1 — y)/(l + y),

so that the proper substitution for this purpose is x = a(l — y)/( 1 + y).

If we take the value of y from this equation, we have

a — x , 2x
y = = 1 ,

a + x a + x

but, since

x _ V

a

2 + x2 MD
a + x b MN’

we shall have

2MD MN - 2MD 2DR 2DR
V MN ~ MN ~ MN ~

~b~
’

where R is the midpoint of the line MN. From this we see that we would have
arrived at a fourth-degree equation without odd powers of the unknown if we
had taken the line DR as the unknown. This is what Newton did in the solution

of the problem in the Universal arithmetic
,

7 but we must confess, it seems to me,
that such a choice of the unknown is not very natural, and that it can only be

7 On this book see Selection II. 9. It contains a number of geometrical problems; Lagrange
seems to refer to Problem 29.
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done, so to say, post festum. At any rate it seems to me that the principle on

which Newton lets it depend has not all the evidence that we may rightly

demand in a matter of this kind.

12 LAGRANGE. CONTINUED FRACTIONS

We have seen in Selection 1.1 that Leonardo of Pisa introduced a type of continued fraction.

We meet an algorithm equivalent to our modern continued fractions in Raffaele Bombelli’s

L’Algebra (Bologna, 1572), a book best known for its treatment of imaginaries, and in the

Trattato del modo brevissimo di trovare la radice quadra delle numeri (Bologna, 1613) by

Pietro Antonio Cataldi (1552-1626). Both men were professors at the University of Bologna.

Their algorithm is equivalent to what we now write

VM = Va2 +~r = a + £-
,

r
2a +

2^ + -- 4

’

where M is a positive integer and a2 the square closest to M and less than M

.

Bombelli

computed several partial fractions of V l3 = V9 + 4, Cataldi of Vl8 = V16 + 2.

Translations of part of their computations can be found in Smith, Source book, 80-84; the

texts, in the original Italian, can be found in A. Favaro, “Notizie storiche sulle funzioni

continue dal secolo decimoterzo al decimosettimo,” Bullettino di Bibliografia e di Storia delle

Scienze Matematiche e Fisiche (Boncompagni) 7 (1874), 451-589. Here we also find the text

in which John Wallis, in his Arithmetica infinitorum (Oxford, 1656), after having obtained

his infinite product for = 4/tt (Selection IV. 13), announces that Lord William Brouncker

(16201-1684), “that Most Noble Man, after having considered this matter, saw fit to bring

this quantity by a method of infinitesimals peculiar to him, to a form which can thus be

conveniently written

D = li
?25
2

2 ^ 81
2

2 etc.,”

and pointed out how the partial fractions are successively larger and smaller than , the

process converging to it [ad numerum justum acceditur\.

The theory was further developed by Euler in several papers; see 0. Perron, Die Lehre

von den Kettenbriichen (3rd ed.; Teubner, Stuttgart, 1954), I, 190. In “De fractionis con-

tinuis dissertatio,” Commentarii Academiae scientiarum Petropolitanae 9, 1737 (1744),

98-137, Opera omnia, ser. I, vol. 14, 187-215, Euler proved that a periodic continued frac-

tion is the root of a quadratic equation. The converse theorem was proved by Lagrange in

his “Addition au Memoire sur la resolution des equations numeriques,” Histoire de VAcad-

emic Royale, Berlin, 24, 1768 (1770), 111-180, Oeuvres, II (1868), 581-652. The “Memoire”

to which this was an addition appeared in the same Histoire 23, 1767 (1769), 311-352,

Oeuvres, II, 539-578. In this paper Lagrange had shown how, given a numerical equation of

any degree with a positive root, this root can be expressed in a continued fraction. We pre-

sent here, from the “Addition,” Lagrange’s proof of the converse theorem.
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In order to give this proof, Lagrange writes the quadratic equation

E±x
2 — 2ex — E = 0,

where E, E
1 are integers such that e

2 + EE1 > 0. Hence the roots are real. Let

x =
e + Vb
E

i

B = e
2 + EEU

and let A be the integer closest to and less than x; then

x = A +

and x satisfies an equation of the form

Lagrange proves that

Writing

E2xf
— 2e 1 a; 1 — Ex

= 0.

€
2 + E 1E2 = e

2 + EE
1 = B.

,
1

x
1 — Ai H f

where Aj is the integer closest to and less than xlt and carrying on in the same way, he
obtains a series of “transformed equations”:

(A)

E
y + 1x

2
r
- 2e

y
x

r
- E

y = 0, Y = 1. 2, 3, . .

.

where

x'= E
+ ^B

- - A +
1- Ay +1 + ^

»

y + 1 *°y +

1

and for x the continued fraction

1
* — Aj + —

t

1

^3
^2 + ~ +

34. Now I claim that the continued fraction which expresses the value of x
will always be necessarily periodic.

To prove this theorem we shall begin by proving generally that, whatever be

the proposed equation, we shall necessarily always arrive at transformed

equations in which the first and last terms have different signs.
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We omit this proof, which is based on a theorem in Lagrange’s Memoire of 1769 that in

constructing the series of transformed equations we must arrive at one of which only one

root is > 1. Then in sec. 35 Lagrange takes (A) to be this equation. Then in (A) and in the

following transformed equations

the first and the last terms will be of different signs, so that the numbers

E
y ,
Ey+1 ,

Ey+ 2 , . . .

all have the same sign. Now we have

B = e f + E
y
E

y + 1
= ep + 1 + E

y + 1
E

y + 2 ,

hence, since E
y , E y + 1 ,

E
y + 2 , . .

.

have the same sign, the products E
y
E

y + 1 ,

E
y + 1
E

y + 2 ,
. . . will necessarily be positive, from which it follows:

1°) that we shall have

£y < B, e?
/ + 1 < B

,

that is (if we disregard the sign),

e
y < B, e

y + 1 < B,

and so on to infinity;

2°) that, since the numbers E, E
y ,
E2 , . . . are all integers,

E
y < B , E

y + 1 < B, E
y + 2 < B.

Hence, since B is given, it is clear that there are only a certain number of

integers that are < B or < V B. The numbers

Ey, Ey+ 1; E y + 25 • • • 5
e y5 e

y + l) C
y + 25’’’5

can therefore have only a certain number of different values. Thus, in the one as

well as in the other of these sequences it is necessarythat, when we go to infinity,

the same terms return an infinite number of times. By the same token, it is also

necessary that the same combination of corresponding terms in the two

sequences return an infinite number of times, from which it follows that we

shall necessarily have, for example,

it
y + ^ + y E

y + ,j, 6 y + j + y €y +

E5 E5
-L^U + V 5

€
/Z + V

or, taking y + 8 = fi,
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Hence, since

we have

But, since

B = 4 + E„E„ + 1 = <^ + v + EU + VEU + V+1 ,

-^U + V + 1
=

+ 1 •

= i«
+ VB

and , + -Si±* + VB
K + i E„

Xu + v = Xu> so that the continued fraction will necessarily be periodic.

36. Indeed, we see, by means of the previous formulas, that, if

E
it + v E^ and q, + v — cu ,

we shall have

Bu + v + i Eu + 1 , Am + v + 1 — Aa + 1 ,
eu + v + i — eu + i,

and so on, so that in general the terms of the three sequences

E, Ei, E2 5
. .

. , €, €25 • • • j Aj, A2 ,
. .

.

,

which will have for index
[exponant ] jj. + nv + tt. are the same as the preceding

terms whose indices are p. + tt, if we take for n some positive integer.

Every one of these three sequences thus will be periodic, beginning with the
terms E

u , Au + 1 ,
and their periods will have v terms, after which the same

terms will recur in the same order, to infinity.

Then Lagrange goes on to prove that, as soon as in the sequence E, Elt E2 , . .

.

we arrive

at two consecutive terms, such as E
y ,
E

y + 1 ,
that have the same sign, we are certain that one

of these two terms will already be one of the periodic terms. Also that if two corresponding
terms, say Ey+3 ,

e
y + 3 ,

of the sequences E
y ,
E

y + 1 , . .
. , e

y ,
e
y + 1 , . .

.

are given, all the preced-
ing terms in these sequences are given. And finally, if we have arrived at these terms
E

y ,
E

y + 1 of the same sign, then the one < VB will be the periodic one.

42. If we have e = 0, so that x = V7EjE^
j

1 then B = EE lt from which we
see that of the two numbers E, E1 the smallest will be < VB, and the largest

will be >VB, hence in this case, if the number E\E
y
of which the square root

has to be taken, is < 1, then the sequence will be periodic from the first term E

1 The use of the solidus
/ for the fraction bar is the only change in notation we have made.

Lagrange’s notation, like Euler’s, is not, or hardly, different from ours.
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on, and if this number is >1, then the period cannot start lower than the

second term.

Lagrange continues by giving a method to simplify the procedure, and then studies the

case in which both + and — appear in the continued fraction.

13 GAUSS. THE FUNDAMENTAL THEOREM OF ALGEBRA

The first satisfactory proof of this theorem was presented by Carl Friedrich Gauss (1777-

1855) in his Helmstadt doctoral dissertation of 1799 under the title Demonstratio nova

theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores

reales primi vel secundi gradus resolvi posse (New proof of the theorem that every integral

rational algebraic function of one variable can be decomposed into real factors of the first

or second degree), Werke, III, 3-56. After a criticism in Secs. 1-12 of the previous demon-

strations by D’Alembert (1746), Euler (1749), De Foncenet (1759), and Lagrange (1772),

Gauss proceeds as follows. It will be seen that in the geometrical language he uses he trans-

fers geometrical continuity to arithmetical quantities without proof, but at least at one

place expresses his conviction that he can make this aspect of his proof also strictly

rigorous. This can indeed be accomplished by the methods of Bolzano and Weierstrass.

13. Lemma. If rn is an arbitrary positive integer, then the function

sin xm — sin m<p-rm
~ 1x + sin (m — \)cp-rm is divisible by x2 — 2 cos cp-rx + r

2
.

The proof is given by direct division.

14. Lemma. If the quantity r and the angle 9 are so determined that the

equations

rm cos mcp + Arm ~ x cos (to — 1)95 + Brm
~ 2 cos (to — 2 )<p + etc.

+ Krr cos 2<p + Lr cos 9 + M = 0, (1)

r
m sin mcp + Arm ~ x sin (w. — 1)9 + Brm

~ 2 sin (to — 2)9 4- etc.

+ Krr sin 29 + Lr sin 9 = 0 (2)

exist, then the function

xm + Axm ~ x + Bxm ~ 2 + etc. + Kx2 + Lx + M = X

will be divisible by the quadratic factor x2 — 2 cos rx + r2
,
unless r sin 9 = 0.

If r sin 9 = 0, then the same function is divisible by x — r cos 9.



116
|

II ALGEBRA

The proof is given by taking the functions

sin cp rxm - sin m<p-rmx + sin (m - \)<p-rm + 1
,

A sin y-rx”1
- 1 - A sin (m - \)cp-rm

~ 1x + A sin (m - 2)<p-rm
,

-B sin <p • rxm
~ 3 - B sin (m - 2 )<p-rm

~ 2x + B sin (to - 3)9>-r
m - 1

,

• • - e*c etc

K sin <p-rx2 - K sin 2cp r2x + Ksincp-r3
,

L sin <p rx — L sin cp rx *

Msmcpr * + M sin
( -<p)-r,

’

which are each divisible hy x2 - 2 cos cp xr + r2 (according to the first lemma)
and which, added up, give sin cp-rX + 0 + 0. When r = 0, X is divisible by
x — r cos cp; when sin cp = 0, then cos cp = ± 1, cos 2<p = +1, cos 3cp = ± 1.

etc. and X becomes zero for x = r cos cp.

15. The previous theorem is usually given with the aid of imaginaries, cf.

Euler, Introductio in analysin infinitorum
, I. p. 110; 1 I found it worth while to

show that it can be demonstrated in the same easy way without their aid. Hence
it is clear that, in order to prove our theorem, we only have to show: If some
function X of the form xm + Axm ~ 1 + Bxm ~ 2 + etc. + Lx + M is given, then
r and cp can he determined in such a way that the equations (1 ) and (2) are valid.
Indeed, from this it follows that X possesses a real factor of the first or second
degree; division by it necessarily gives a real quotient of lower degree ... We
shall now prove this theorem.

16. We consider a fixed infinite plane (the plane of our Fig. 1) and in it a
fixed infinite straight line GO passing through the fixed point C. In order to

Fig. 1

G G

express all line segments by numbers we take an arbitrary segment as unit, and
erect at an arbitrary point P of the plane, with distance r from center C and
with angle GCP = /x, a perpendicular equal to the value of the expression

rm sin rncp + Arm ~^ sin (m - \)<p + etc. + Lr sin cp.

I shall denote this expression by T. I consider the distance r always as positive,
and for points on the other side of the axis the angle cp must either be taken as
larger than two right angles, or (what amounts to the same thing) as negative.
The end points of this perpendicular (whicli have to be taken as above the plane
for positive T , as below the plane for negative T, and for vanishing T as in the
plane) form a continuous, curved surface, infinite in all directions, which I shall
call for the sake of brevity the first surface. In exactly the same way we can refer
to the same plane, the same center, and the same axis another surface, with
altitude above every point of the plane equal to

rm cos m<p + Arm ~ 1 cos (m - 1)93 + . .
. + Lr cos cp + M;

1 This is the book from which Selection V.15 is taken. See also note 8 below.
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this expression I shall always denote by V

.

This surface, also continuous and

infinite in all directions, will be distinguished from the other one by the name of

second surface. From this it is clear that our entire task is then to prove that

there exists at least one point that lies at the same time in the plane, in the first

surface, and in the second surface.

17. It can easily be understood that the first surface lies partly above, and

partly below the plane, since we can take the distance r from the center so large

that the first term rm sin mcp in T surpasses all following terms; if then the angle

<p is conveniently chosen, this term can become positive as well as negative. The

fixed plane must therefore be intersected by the first surface. I shall call this

intersection the first curve, and it will be determined by T = 0. The same reason-

ing shows that the plane is intersected by the second surface; this intersection

will be called the second curve, and its equation will be U = 0. Both curves will,

properly speaking, consist of several branches, which may be entirely separated

from each other, but each by itself forms a continuous curve. Indeed, the first

curve will always be a so-called reducible curve, since the axis GC must be

considered a part of this curve, because T = 0 for <p = 0 or cp — 180° for any

value of r. We prefer, however, to consider the totality of all branches, which

pass through all points for which T = 0, as one single curve (as is customary in

higher geometry). The same happens for all branches passing through the points

for which U = 0. Now our problem has been reduced to the task of proving that

there exists in the plane at least one point at which one of the branches of the

first curve is intersected by one of the branches of the second curve. This makes
it necessary to study more closely the behavior of these curves.

18. First I observe that each curve is algebraic, and, referred to orthogonal

coordinates, of order m. Indeed, if the origin of the abscissae is taken at C and

the direction of the abscissa x is measured toward G and that of the ordinate y
toward P, then x = r cos <p, y = r sin <p, and generally, for arbitrary n :

rn sin ncp = nxn x
y

n(n - 1)(m - 2)

1-2-3 V +
- 4

) -»-
1 •

• 5
x" V etc,

rn cos ncp = xn
nin - !

) „n-2..2 ,

n
(
n - !)(w - 2 )(w - 3)

1-2
* y +

1 -2-3-4
etc.

T and V consist therefore of several terms of the form axa
y
B

,
where a, {S are

positive integers, whose sum has m as its maximum value. Moreover, it is easy

to see that, all terms of T contain the factor y, so that the first curve, to express

it exactly, consists of the line with equation y = 0 and a curve of order m — 1.

However, we do not need to take this difference into consideration.

It is of more importance to investigate whether the first and second curves

have infinite branches, and what their number and character will be. At an

infinite distance from the point C the first curve, with equation

A B
sin m<p + — sin

(
m — l)<p + — sin (m — 2)<p etc = 0

coincides with that curve whose equation is sin mcp = 0. This consists only ofm
straight lines intersecting at C

;
the first of these is the axis GCG', the other ones
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make with this axis the angles (l/m)180°, (2/ra)180°, (3/m)180°, .... The first

curve therefore has 2m infinite branches, which divide the circumference of a
circle described with infinite radius into 2m equal parts, such that its circum-
ference is intersected by the first branch in the intersection of the circle with the
axis, by the second branch at distance (2/m) 180°, by the third one at distance
(3/m)180°, etc. It follows similarly that the second curve at infinite distance from
the center has the curve represented by the equation cos m<p = 0 as its asymp-
tote. This curve consists of the totality of m straight lines which also intersect
in C at equal angles, but in such a way that the first one forms with the axis CG
the angle (l/m)90°, the second one the angle (3/m)90°, the third one the angle
(5/m)90°, etc. The second curve therefore also has 2m infinite branches, which
each form the middle between two neighboring branches of the first curve, so
that they intersect the circumference of the circle of infinite radius in points
which are (l/m)90°, (3/ra)90°, (5/m)90°, . . . away from the axis. It is also clear

that the axis itself always forms two infinite branches of the first curve, namely,
the first and the (m + l)th. This situation of the branches is well illustrated by
Ifi^- 2, constructed for the case m — the branches of the second curve are
here dotted to distinguish them from those of the first curve. This also occurs in
-F'i^. 4. Since these results are of the utmost importance, and some readers might
be offended by infinitely large quantities, I shall show in the next section how
these results can also be obtained without the help of infinite quantities.

19. Theorem. Under the conditions mentioned before we can construct a circle

with center C, on the circumference of which there exist 2m points at which T = 0,

and as many points at which U = 0; they are situated in such a way that each point

of the second kind lies between two of the first kind.

Let the sum of all coefficients (taken positive) A, B, . . K, L, M be = S\
let furthermore R be at the same time >SV

2

and > l.
3 I then say that on the

2 [Footnote by Gauss] Fig. 4 is constructed assuming X = x i — 2xx + 3x + 10; so that
readers less familiar with general and abstract investigations can study in a concrete example
how both curves are situated. The length of line CG = 10 (CN = 1.26255).

3 [Footnote by Gauss] For S > Vj the second condition is contained in the first one, for
S < V] the first condition in the second one.
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circle described with radius R the conditions exist indicated in the theorem. I

denote for short by 1 that point of its circumference which is distant (l/m)45°

from the point of intersection of the circle with the left-hand side of the axis.

Hence for (1) 9 = (l/m)45°. Similarly I denote by (3) that point which is distant

(3/m)45° from the point of intersection and for which therefore 9 = (3/m)45°, . .

.

up to the point (8m — 1) which is distant [(8m — l)/m]45° from that point of

intersection if we always proceed in the same direction, or (l/m)45° if we move
in the opposite way. Thus there are in total 4m points in the circumference at

equal distances from each other. Then there exists between (8m —
1) and (1)

a point for which T = 0, a similar point lies between (3) and (5), between (7) and
(9), . .

. ;
their number is 2m. In the same way we see that the single points for

which U = 0 lie between (1) and (3), between (5) and (7), . . . ;
their number is

therefore also 2m. Apart from these 4m points there are no other points on the

circumference for which T or V = 0.

Proof. I. At point (1) m<p = 45°, and therefore

T = Rm - l (^Rx/\ + A sin (m - 1)9 + -?sin (m - 2 )<p + etc. + sin 9

The sum A sin (m — 1 )tp + (
Bj

R

)
sin (m — 2)9 etc certainly cannot be larger

than S, and hence must be smaller than R\' b\ the value of T at this point

is therefore certainly positive. Hence, a fortiori, T is positive when m lies be-

tween 45° and 135°, that is, T has always a positive value from point (1) to

point (3). The same reasoning shows that T is everywhere positive from point (9)

to point (11), and, generally speaking, from some point (8k + 1) to point

(8k + 3), where k means any integer. In a similar way we see that T is negative

everywhere between (5) and (7), between (13) and (15), etc., and, generally

speaking, between (8k + 5) and (8k + 7), so that in all these intervals it can

nowhere be = 0. But since at (3) the value is positive and at (5) negative, it

must be = 0 somewhere between (3) and (5)
4 and in the same way between

(11) and (13), etc. up to the interval between (8m — 1) and (1) inclusive, so that

together T = 0 at 2m points.

II. That there are, apart from these 2m points, no others of the same property

can be seen in the following way. Since there are none between (1) and (3),

between (5) and (7), etc., other such points would exist only if in one of the

intervals from (3) to (5) or from (7) to (9), etc. there were at least two of them.

In that case, however, T would have to be in the same interval at some point

either a maximum or a minimum, 5 hence dT/d<p = 0. But

dT >/ n m — 1 .

-j- = mRm cos m<p H —— A cos (m — 1)9 + etc.

4 This is one of the places where Gauss accepts on visual evidence a theorem that now
requires proof.

5 This theorem is named after Michel Rolle (1652-1719), in whose Methode pour resoudre
les egalitez (Paris, 1691) it can be found without proof and without special emphasis. It

appeared in other eighteenth-century works, as in Euler’s Institutiones calculi differentialis

(Saint Petersburg, 1755), sec. 298 (Opera omnia, ser. I, vol. 18, 503). See F. Cajori, Biblio-

theca Mathematica (3d ser.) 11 (1910-11), 300-313.
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and cos m<p is always negative between (3) and (5) and [in value] > vT. From
this we can easily see that dTjdcp is a negative quantity in this whole interval;

and in the same way we see that it is everywhere positive between (7) and (9),

everywhere negative between (11) and (13), etc. In none of these intervals there-

fore can it be = 0, so that our assumption was wrong. Hence, etc.

III. Here Gauss shows in the same way that dUjdcp cannot be 0 in the intervals (1) and (3),

(5) and (7), etc., so that there are on the circumference of the circle no more than 2m points
where V = 0.

That part of the theorem which teaches that there are no more than 2m points
at which T = 0, and no more than 2m points at which {7 = 0, can also be
demonstrated by representing T = 0, U = 0 as curves of order n, which are

intersected by a circle, being a curve of the second order, in no more than 2m
points, as is stated in higher geometry. 6

20. If another circle with radius larger than R is described around the same
center and is divided in the same way, then here also there exists between the
points (3) and (5) a single point at which T = 0, and similarly between (7) and
(9), etc., and it can easily be seen that such points between (3) and (5) on both
circumferences are the closer the less the radius of the larger circle differs from
the radius R. The same also happens if the circle is described with a radius
somewhat smaller than R, but still larger thanSV

2

and 1 . From this we see that
the circumference of the circle described with radius R is actually intersected by
a branch of the first curve at that point between (3) and (5) where T = 0; the
same holds for the other points where T = 0. It is also clear that the circum-
ference of this circle is intersected by a branch of the second curve at all 2m
points for which U = 0. These conclusions can also be expressed in the following

way : If a circle of sufficient size is described around the center C, then 2m branches
of the first curve and as many branches of the second curve enter into it, and in

such a way that every two neighboring branches of the first curve are separated
from each other by a branch ofthe second curve . See Fig . 2 ,

where the circle is now
no longer of infinite, but of finite magnitude; the numbers added to the separate
branches should not be confused with the numbers by which I have denoted for

short, in the previous and in this paragraph, certain limiting points on the
circumference.

21. It is now possible to deduce from the relative position of the branches
which enter into the circle that inside the circle there must be an intersection of

6 Gauss refers to the theorem named after Etienne Bezout ( 1730-1783), but also announced
by other authors of his time. It was only insufficiently proved in Gauss’s day.
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a branch of the first curve with a branch of the second curve, and this can be

done in so many ways that I hardly know which method is to be preferred to

another. The following method seems to be the clearest: We indicate by 0
(Fig. 2) that point of the circumference of the circle in which it is intersected by
the left-hand side of the axis (which itself is one of the 2m branches of the first

curve); the next point, at which a branch of the second curve enters, by 1; the

point next to this, at which a branch of the first curve enters, by 2, etc., up to

4m — 1 . At every point indicated by an even number, therefore, a branch of the

second curve enters into the circle, but a branch of the first curve at every point

indicated by an odd number. Now it is known from higher geometry that every

algebraic curve (or the single parts of an algebraic curve when it happens to

consist ol several parts) either runs into itself or runs out to infinity in both

directions and that therefore, if a branch of an algebraic curve enters into a

limited space, it necessarily has to leave it again. 7 From this we can easily

conclude that every point indicated by an even number (or, for short, every even

point) must be connected with another even point by a branch of the first curve

inside the circle, and that in a similar way every point indicated by an odd
number is connected with another similar point by a branch of the second
curve. Although this connection of two points may be quite different because of

the nature of the function X, so that it cannot in general be determined, yet it

7 [Footnote by Gauss] It seems to be sufficiently well demonstrated that an algebraic
curve can neither be suddenly interrupted (as e.g., occurs with the transcendental curve
with equation y — 1/log x), nor lose itself after an infinite number of terms (like the
logarithmic spiral), and nobody, to my knowledge, has ever doubted it. But if anybody
desires it, then on another occasion I intend to give a demonstration which will leave no
doubt. Moreover, it is clear in the present case that if a branch, for instance 2, were nowhere
to leave the circle (Fig. 3), one could enter the circle between 0 and 2, then go around this

whole branch (which has to lose itself in the space of the circle), and at last leave the circle again
between 2 and 4, without meeting the first curve anywhere on the way. But this is patently
absurd, since at the point at which you enter the circle you have the first surface above you,
but where you leave the circle it is below you. Hence you would necessarily meet the first

surface somewhere, and this at a point of the first curve.—From this reasoning, based on the
principles of the geometry of position [geometria situs], which are no less valid than the
principles of the geometry of magnitudes, it also follows that, if you enter the circle on a
branch of the first curve, you can leave it at another point by always staying on the first

curve, but it does not follow that the path is continuous in the sense accepted in higher
geometry [see note 8]. It is here sufficient that the path be a continuous line in a general
sense, that is, nowhere interrupted, but everywhere coherent.
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can easily be shown that, whatever this connection may be, there will always be an
intersection of the first with the second curve.

22. The proof of this necessity can best be given in an indirect way [apago-

gice].
8 We shall assume that the connection of pairs of all even points and of

pairs of all odd points can be arranged in such a way that no intersection results

of a branch of the first curve with a branch of the second curve. Since the axis

is a part of the first curve, point 0 will clearly be connected with point 2m. The
point 1 therefore cannot be connected with a point situated outside of the axis,

that is, with no point indicated by a number larger than 2to, since otherwise the

connecting curve would necessarily intersect the axis. If therefore we suppose
that 1 is connected with the point n, then n will be < 2m. By a similar reasoning
we find that when 2 is connected with n', n' < n, since otherwise the branch
2 •••«.' must necessarily intersect the branch 1 • • n. Point 3, for the same
reason, must be connected with a point situated between 4 and n', and it is clear

that, if we suppose 3, 4, 5, . .

.

to be connected with n", n"" , . .

.

,
n"' is situ-

ated between 5 and n"
, n"" between 6 and n", etc. From this it follows that at

last we come to a point h which is connected with the point h + 2. The branch
which at point h + 1 enters into the circle must in this case intersect the branch
connecting the points h and h + 2. But since the one of these two branches
belongs to the first, the other to the second curve, it is clear that our assumption
is contradictory, and that therefore there exists necessarily somewhere an inter-

section of the first with the second curve.

If we combine this result with the previous one, then we arrive from all the

investigations explained above at the rigorous proof of the theorem that every

integral rational algebraic function of one variable can be decomposed into real

factors of the first and second degree.

In the last two sections Gauss (1) observes that the same reasoning could have led to the
conclusion that there exist at least m intersections of the first and second curve, (2) notes
that the proof, here based on geometrical principles, could also have been presented in a
purely analytical form, and (3) gives a short sketch of a different proof.

Gauss, during his lifetime, returned to the theorem more than once, and gave three more
proofs. The last one, of 1849, took up again the ideas of the first one, but now using imag-
inaries. Gauss added that he avoided using them in 1799, but in 1849 it seemed to him no
longer necessary. All the proofs can be found in a German translation by E. Netto in Ost-

wald’s Klassiker
,
No. 14 (Engelmann, Leipzig, 1890).

8 Gauss may refer here to Euler’s definition of a continuous curve in his Inlroductio in
analysin infmitorum (Lausanne, 1748), vol. II, cap. 19; Opera omnia

, ser. I, vol. 9, p. 11:
A line is called a continuous curve if its nature is expressed by one definite function, where
(vol. I, cap. 14; Opera omnia

, ser. I, vol. 8, p. 18) a function is a variable quantity z, defined
as an analytical expression composed of this variable quantity and constant numbers or

quantities, such as a + 3z, az 4- bV (aa — zz), c*, etc.

On Euler’s proof and Gauss’s critique, see also A. Speiser’s note in Euler, Opera omnia,
ser. I, vol. 29 (1956), Einleitung, pp. VIII—X.
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14 LEIBNIZ. MATHEMATICAL LOGIC

Gottfried Wilhelm von Leibniz (1646-1716), German philosopher, mathematician, historian,

and linguist, must be credited with one of the attempts to create an algebra of logic. Many
scholars see in the work of the Spanish scholastic philosopher Raimundo Lullio (1235-1315)

an earlier attempt, and indeed, in Lullio’s Ars magna we find a description of a kind of

logical machine for combining certain classes of concepts occurring in theology, which leads,

among many other consequences, to tables of permutations and combinations. This early

attempt at a scientia universalis had some influence on Descartes (who did not care for it:

“the art of Lullio serves rather to speak without judgment on things that we do not know
than to understand them,” in the second section of the Discours de la methode) and other

mathematicians, including Leibniz. We have seen that Cardan, who called his mathematics

Ars magna, and Viete, who thought that with his speciosa he could solve all mathematical

questions, played with similar ideas of a science beyond the existing science. Leibniz, from

his early days when he studied permutations and combinations until the end of his life,

attempted such generalizations. In a letter to Christiaan Huygens, dated September 8,

1679, he wrote (in French):

“But after all the progress that I have made in these matters [he speaks of his calculus,

and of systems of transcendental equations such as a:
2 + z

x = b, xx + z
z ~ c, b, c constants],

I am still not satisfied with Algebra in that it gives neither the shortest ways nor the most
beautiful constructions of Geometry. This is the reason that with respect to this I believe

that we need still another Analysis which is purely geometric or linear, which expresses for

us directly position [situs'] as Algebra expresses magnitude. And I believe that I see the

means thereto, and that one could represent figures and even machines and motions in

characters, as Algebra represents numbers or quantities, and I send you an essay that seems

to me of a certain importance”; Huygens, Oeuvres completes, VIII (1899), 216.

This essay is also printed in the same Oeuvres, 219-224, and reminds one a little of

Grassmann’s point calculus. With it Leibniz claims to prove, for instance, that a plane and
a sphere intersect in a circle; but his technical apparatus is quite different. A related

manuscript, dated 1676 and entitled Characteristica geometrica, is printed in Leibniz,

Mathematische Schriften, part 2, vol. 1 (1858), 141-178. The next paper, also related, is

called De analysi situs (178-211).

See on this calculus H. Freudenthal, “Leibniz und die Analysis situs,” Consejo superior

de investigaciones cientificas. Homenaje a Millds-Vallicrosa (Barcelona
)
1 (1954), 612-621.

Leibniz’s search for a general science of all sciences, to be carried on by a method that he

called characteristica generalis or lingua generalis, also appears in a letter, written in French

toward the end of his life, to Pierre Remond de Montmort (1678-1719) in Paris, known in

the theory of probability. Written March 14, 1714, it mentions Leibniz’s idea of a speciosa

more general than that which Viete had tried to embody in his algebra

:

“I would like to give a method of Speciosa Generalis [Specieuse Generale], in which all

truths of reason would be reduced to a kind of calculus. This could at the same time be a

kind of language or universal script, but very different from all that have been projected

hitherto, because the characters and even the words would guide reason [y dirigeroient la

raison], and the errors (except those of fact) would only be errors of computation. It would

be very difficult to form or to invent this Language or Characteristic, but very easy to learn

it without any Dictionaries. It would also serve to estimate the degree of likelihood (because

we have not sufficient data to arrive at truths that are certain), and to see what is necessary
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to obtain them. And this estimate would be very important for its application to life and
for the deliberations of practice, where by estimating the probabilities one miscalculates
most often in more than half the cases [on se mecompte le plus souvent de plus de la moitie].”

This can be found in C. I. Gerhardt, Die philosophischen Schriften von G. W. Leibniz (7 vols.;

Weidman, Berlin, 1875-1890), III, 611-615. In vol. VII, 3-247, twenty pages of Leibniz on
this subject are collected, with an introduction. See also L. Couturat, La logique de Leibniz
(Alcan, Paris, 1901), and the section on Leibniz in C. I. Lewis, A survey of symbolic logic

(LTniversify of California Press, Berkeley, 1918). Couturat has added other Leibniz notes on
the same subject in Opuscules et fragments inedits de Leibniz (Alcan, Paris, 1903). English
translations of some of Leibniz’s essays in this field can be found in L. E. Loemker, G. W.
Leibniz, Philosophical papers and letters (University of Chicago Press, Chicago, 1956), Vol. 1.

The following selection is a translation of paper XX of the Gerhardt collection (VII.

236-247), which, together with a translation of paper XIX, is based on an appendix in

the book by C. I. Lewis. Both essays represent one of the later forms in which Leibniz
expressed his calculus universalis, the calculus for displaying the most universal relations of
scientific concepts, in which we recognize a first attempt at mathematical logic. The essay
is of uncertain date, but was written after 1685, and was never published until Gerhardt
brought it to light. Added to it. is a segment of Gerhardt’s paper XIX (vol. VII, 228-235),
which is similar to XX, but also contains the concept of “subtraction.” Here Leibniz
writes A + B, where in XX he writes A © B, for “both A and B,” the class made up of
the two classes A and B in extension.

A paraphrase of the Lewis translation of paper XX with comment can be found in

W. and M. Kneale, The development of logic (Clarendon Press, Oxford, 1962), 340-343.

For further information on the history of formal logic see H. Scholtz, Concise history of
logic (Philosophical Library, New York, 1961). On the development of mathematical logic

see also Jean van Heijenoort, ed., From Frege to Godel: A source book in mathematical logic,

1879-1931 (Harvard University Press, Cambridge, Massachusetts, 1967).

Definition 1. Terms which can be substituted for one another wherever we
please without altering the truth of any statement [salva veritate], are the same

[eadem] or coincident [coincidentia ]. For example, “triangle” and “trilateral,”

for in every proposition demonstrated by Euclid concerning “triangle” “tri-

lateral” can be substituted without loss of truth.

A = B 1
signifies that A and B are the same, or as we say of the straight line

XY and the straight line YX [Fig. 1], XY = YX, or the shortest path of a

[point] moving from X to Y coincides with that from Y to X.

Definition 2. Terms which are not the same, that is, terms which cannot
always be substituted for one another, are different [

diversa ]. Such are “circle”

and “triangle,” or “square” (supposed perfect, as it always is in Geometry) and
“equilateral quadrangle,” for we can predicate this last of a rhombus, of which
“square ” cannot be predicated.

A i= B signifies that A and B are different, as, for example, R Y S X the

straight lines XY and RS.

1 Leibniz writes A co B, the symbol co or 30 being at that time a common symbol for
equality (see, for instance, Descartes, Selection II. 8 ).
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A

Fig. I

B

Proposition 1. If A = B, then also B = A. If anything he the same with

another , then that other will he the same with it. For since A = B (by hyp.), it

follows (by def. 1) that in the statement A = B (true by hyp.) B can be sub-

stituted for A and A for B\ hence we have B = A.

Proposition 2. IfA # B, then also B ^ A. Ifany term he differentfrom another,

then that other ivill be different from it. Otherwise we should have B = A, and in

consequence (by the preceding prop.) A = B, which is contrary to hypothesis.

Proposition 3. If A = B and B = C, then A = C. Terms which coincide with

a third term coincide with each other. For if in the statement A = B (true by
hyp.) C be substituted for B (by def. 1, since C = B), the resulting proposition

will be true.

Corollary. If A = B and B = C and C = D, then A = D; and so on. For
A = B = C, hence A = C (by the above prop.). Again, A = C = D; hence (by

the above prop.) A = D.

Thus since equal things are the same in magnitude, the consequence is that

things equal to a third are equal to each other. The Euclidean construction of

an equilateral triangle makes each side equal to the base, whence it results that

they are equal to each other. If anything be moved in a circle, it is sufficient to

show that the paths of any two successive periods, or returns to the same point,

coincide, from which it is concluded that the paths of any two periods whatever

coincide.

Proposition 4. IfA = Band B ^ C, then A ^ C.If of two things which are the

same with each other
,
one differfrom a third, then the other also will differfrom that

third. For if in the proposition B =£ C (true by hyp.) A be substituted for B, we
have (by def. 1, since A = B) the true proposition A # C.

Definition 3. A is in L, or L contains A, is the same as to say that L can be

made to coincide with a plurality of terms, taken together, of which A is one. 2

Definition 4. Moreover, all those terms such that whatever is in them is in L,

are together called components (componentia) with respect to the L thus com-

posed or constituted.

B @ N = L signifies that B is in L; and that B and N together compose or

constitute L. The same thing holds for a larger number of terms. 3

2 Definition 3 of paper XIX says: If a plurality of terms taken together coincide with one,

then any one of the plurality is said to be in
(
inesse

)

or to be contained in
(
conteneri

)
that one

with which they coincide, and that one is called the container (continens ).

3 Leibniz here introduces the logical addition of terms, distinguishing its symbol from
that for arithmetical addition, -f , by a circle around it. He did not make this distinction for

the symbol for equality; see note 1.
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Definition 5. I call terms one of which is in the other subalternates
(
subal

-

ternantia), as A and B if either A is in B or B is in A.

Definition 6. Terms neither of which is in the other [I call] disparate

(disparata).

Axiom 1. B @ N = N @ B, or transposition here alters nothing. 4

Postulate 1. If an arbitrary term is given, then it is possible to find some term
different from it, and even disparate, or one that is not in the other. 5

Postulate 2. Any plurality of terms, as A and B, can be added to compose a

single term, A ® B or L.

Axiom 2. A ® A = A. If nothing new be added, then nothing new results,

or repetition here alters nothing. (Tor 4 coins and 4 coins are 8 coins, but not
4 coins and the same 4 coins already counted.)

Proposition 5. If A is in B and A = C, then C is in B. That which coincides

with the inexistent, is inexistent.

6

For in the proposition, A is in B (true by hyp.),

the substitution of C for A (by def. 1 of coincident terms, since, by hyp., A = C)
gives, C is in B.

Proposition 6. IfC is in B and A = B, then C is in A . Whatever is in one of two
coincident terms, is in the other also. For in the proposition, C is in B, the sub-

stitution of A for B (since A = B) gives, C is in A? (This is the converse of the
preceding.)

Proposition 7. A is in A. Any term whatever is contained in itself. For A is in

A © A (by def. of “inexistent,” that is, by def. 3) and A @ A = A (by ax. 2).

Therefore (by prop. 6), A is in A.

Proposition 8. If A = B, then A is in B. Of terms which coincide, the one is in

the other. This is obvious from the preceding. For (by the preceding) A is in A
—that is (by hyp.), in B.

Proposition 9. If A = B , then A@C=B@C. If terms which coincide be

added to the same term, the results will coincide. For if [Fig. 2] in the proposition,

A @ C = A @ C (true per se), for A in one place be substituted B which co-

incides with it (by def. 1), we have A @ C = B @ C.

A®C

A

B

Fig. 2. A “triangle” and B “trilateral” coincide; '

A © G “equilateral triangle” and B @ C “equi- B 0 C
lateral trilateral” coincide.

4 This is the commutative law for logical addition.
Couturat here remarks that the second part of this postulate is not valid if we take as

term the whole universe of discourse, since then there exists no disparate term.
6 Here “inexistent” means “existent in”; see note 2.
7 Gerhardt (and Lewis) have “

A

is in B.”
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AjB

Fig. 3. A “triangle” and L “trilateral” coincide;

B “regular” coincides with M “most capacious

of equally-many-sided figures with equal perim-

eters”; “regular triangle” coincides with “most
capacious of trilaterals making equal peripheries

out of three sides.”
L © M

Scholium. This proposition cannot be converted—much less, the two which

follow. A method for finding an illustration of this fact will be exhibited below,

in the problem which is prop. 23.

Proposition 10. IfA = L and B = M, then A @ B = L @ M. If terms which

coincide he added to terms which coincide, the results will coincide. For [Fig. 3]

since B = M, A © B = A ® M (by the preceding), and putting L for the

second A (since, by hyp., A = L) we have A @ B = L @ M.
Scholium. This proposition cannot be converted, for if A @ B = L ® M and

A = L, still it does not follow that B = M—and much less can the following

be converted.

Proposition 11. If A = L and B = M and C = N, then A ® B @ C =
L @ M ® N. And so on. If there he any number of terms under consideration, and

an equal number of them coincide with an equal number of others, term for term,

then that which is composed of the former coincides with that which is composed of

the latter. For (by the preceding, since A = L and B = M) we have A © B =
L @ M. Hence, since C = N, we have (again by the preceding) A @ B ® C =
L ® M © N.

Proposition 12. If B is in L, then A @ B will be in A @ L. If the same term

be added to what is contained and to what contains it, the former result is contained

in the latter. For [Fig. 4] L = B @ N (by def. of “inexistent”), and A ® B is in

B @ N @ A (by the same), that is, A @ B is in L @ A. B

Fig. 4. B “equilateral,” L
“regular,” A “quadrilateral.”

“Equilateral” is in or is an
attribute of “regular”; hence

“equilateral quadrilateral” is

in “regular quadrilateral” or R

“perfect square.” YS is in RX;
hence RT © YS, or RS

,
is in

RT @ RX, or in RX.

A_$L

/x
Y T

L

8 Expressed in a more modern symbolism, the reasoning is: If B < L, then there exists an

N such that L = B + N. But A + B < {A + B) + N, and since (^4 + B) + X =
A + (B + N) = A + L = L + A, A + B<A + L. As Couturat remarks, Leibniz uses

here, implicitly, the associative law for logical addition.
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Scholium. This proposition cannot be converted; for if A @ B is in A @ L,
it does not follow that B is in L.

Proposition 13. If L © B = L, then B is in L. If the addition of any term to

another does not alter that other, then the term added is in the other. For [Fig. 5] B is

in L © B (by def. of "inexistent”) and L @ B = L (by hyp.), hence (by prop. 6)

B is in L.
L

R-
Y

X

\ B

Fig. 5. RY ® RX = RX; hence RY is in RX. —
R Y is in RX

; hence RY © RX = RX. B ® L

Let L be “parallelogram” (every side of which is parallel to some side), B be
“quadrilateral.” “Quadrilateral parallelogram” is the same as “parallelogram.”
Therefore to be quadrilateral is in [the intension of] “ parallelogram

.

5
' Reversing

the reasoning, to be quadrilateral is in “parallelogram.” Therefore, “quadri-
lateral parallelogram” is the same as “parallelogram.”

Proposition 14. If B is in L, then L © B = L. Subalternates compose nothing
new; or if any term which is in another be added to it, it will produce nothing different

from that other.
(
Converse of the preceding.) If B is in L, then (by def. of “in-

existent”) L = B@P. Hence (by prop. 9
)
L® B = B® P ® B, which (by

ax. 2) is = B ® P, which (by hyp.) is = L.

Proposition 15. IfA is in B and B is in C, then also A is in C. What is contained
in the contained, is contained in the container. For [Fig. 6] A is in B (by hyp.),

—"B
Fig. 6. RT is in RS, and RS is in RX; hence RT ^

is in RX. A “quadrilateral,” B “parallelogram,”
G “rectangle.”

hence A © L = B (by def. of “inexistent”). Similarly, since B is in C,
B® M = C, and putting A @ L for B in this statement (since we have shown
that these coincide), we have A © L © M = C. Therefore (by def. of “in-
existent”) A is in C.

To be quadrilateral is in [the intension of] “parallelogram,” and to be paral-

lelogram is in “rectangle” (that is, a figure every angle of which is a right angle).

If instead of concepts per se we consider individual things comprehended by the
concept, and put A for “rectangle,” B for “parallelogram,” C for “quadri-
lateral, the relations of these can be inverted. For all rectangles are compre-
hended in the number of the parallelograms, and all parallelograms in the
number of the quadrilaterals. Hence also, all rectangles are contained amongst
(in) the quadrilaterals. In the same way, all men are contained amongst (in) all
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Fig. 7. RT, N; RS,A;SR® RT, B.

To be trilateral is in [the intension

of] “triangle,” and to be triangle is

in “trilateral.” Hence “triangle”

and “trilateral” coincide. Similarly,

to be omniscient is to be omnipotent .

the animals, and all animals amongst all the material substances, hence all men

are contained amongst the material substances. And conversely, the concept of

material substance is in the concept of animal, and the concept of animal is in

the concept of man. For to be man contains [or implies] being animal.

Scholium,. This proposition cannot be converted, and much less can the

following.

Corollary. If A @ N is in B. N also is in B. For N is in A @ N (by def. of

“inexistent”).

Proposition 16. If A is in B and B is in C and C is in D, then also A is in D.

And so on. That which is contained in what is contained by the contained
,
is in the

container. For ifA is in B and B is in C, A also is in C (by the preceding). Whence

if C is in D, then also (again by the preceding) A is in D.

Proposition 17. If A is in B and, B is in A, then A = B. Terms which contain

each other coincide. For [Fig. 7] if A is in B, then A @ N = B (by def. of “in-

existent”). But B is in A (by hyp.), hence A © N is in A (by prop. 5). Hence

(by coroll. prop. 15) N also is in A. Hence (by prop. 14) A = A @ N ,
that is,

A = B.

Proposition 18. If A is in L and B is in L , then also A @ B is in L. What is

composed of tivo, each contained in a third, is itself contained in that third. For

[Fig. 8] since A is in L (by hyp.), it can be seen that A ® M = L (by def. of

“inexistent”). Similarly, since B is in L, it can be seen that B @ N = L. Put-

ting these together, we have (by prop. 10) A @ M @ B @ N = L @ L. Hence

(by ax. 2) A © M © B © N = L. Hence (by def. of “inexistent”) A @ B is

in L.

Proposition 19. If A is in L and B is in L and C is in L, then A © B © C is

in L. And so on. Or in general, whatever contains terms individually, contains also

what is composed of them. For A ® B is in L (by the preceding). But also C is in

L (by hyp.), hence (once more by the preceding) A Q B @ C is in L.

Fig. 8. RYS is in RX
;
YST

is in RX; hence RT is in RX. A
“equiangular,” B “equilateral,”

A ® B “equiangular equilateral”

or “regular,” L “square.” “Equi-

angular” is in [the intension of]

“square,” and “equilateral” is in

“square.” Hence “regular” is in

“square.”

L

A © B
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Scholium. It is obvious that these two propositions and similar ones can be

converted. For if A © B = L, it is clear from the definition of “inexistent” that

A is in L, and B is in L. Likewise, if A © B © C = L. it is clear that A is in

L, and B is in L
,
and C is in L. Also that A © B is in L, and A © C is

in L, and B © C is in L. And so on.

Proposition 20. If A is in M and B is in N, then A® B is in M @N. If the

former of one pair he in the latter and the former of another pair he in the latter
,
then

what is composed of the former in the two cases is in what is composed of the latter in

the two cases. For [Fig. 9] A is in M (by hyp.) and M is in M ©N (by def. of

inexistent”). Hence (by prop. 15) A is in M © N. Similarly, since B is in N
and N is in M © N, then also (by prop. 18) A © B is in M © N.

Fig. 9. RT is in RY and ST is in SX; hence
RT ® ST, or RY, is in RY © SX, or in RX. If

A be “quadrilateral” and B “equiangular,”
A © B will be “rectangle.” If M be “parallelo-

gram” and N “regular,” M@N will be
“square.” Now “quadrilateral” is in [the in-

tension of] “parallelogram,” and “equiangular”
is in “regular,” hence “rectangle” (or equi-

angular quadrilateral”) is in “regular parallelo-

gram or square.”

M®N

A ® B

Scholium. This proposition cannot be converted. Suppose that A is in if and
A © B is in M © N, still it does not follow that B is in N\ for it might happen
that B as well as A is in M, and whatever is in B is in M, and something dif-

ferent in N. Much less, therefore, can the following similar proposition be
converted.

Proposition 21. If A is in M and B is in N and C is in P, then A © B ®C
is in M © N ® P. And so on. Whatever is composed of terms which are contained,

is in what is composed of the containers. For since A is in M and B is in N (by the
preceding), A © B is in M © N. But C is in P, hence (again by the preceding)

M©B©CisinilT©IV©P.
Proposition 22. Two disparate terms, A and B, being given, tofind a third term,

C, differentfrom them and such that with them it composes subalternates A © C and
B © C—that is, such that although A and B are neither of them contained in

the other, still A © C and B ®C shall one of them be contained in the other.

Solution. If we wish that A © C be contained in B © C, but A be not con-

tained in B, this can be accomplished in the following manner: Assume (by
post. 1) some term, D, such that it is not contained in A, and (by post. 2) let

A © D = C, and the requirements are satisfied.

For [Fig. 10] A®C = A®A®D (by construction) = A © D (by ax. 2).

Similarly, B ®C = B®A® D (by construction). But M © D is in I? © M © D
(by def. 3). Hence A © C is in B © G. Which was to be done. SY and YX are

disparate. If RS ©SY = YR, then SY © YR will be in XY © YR.
Let A be “equilateral,” B “parallelogram,” D “equiangular,” and C “equi-

angular equilateral” or “regular,” where it is obvious that although “equi-

lateral” and “parallelogram” are disparate so that neither is in the other, yet
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B© C

/ A®

\Y
-> X

V
Fig. 10

VVD
''

K '

“regular equilateral” is in “regular parallelogram” or “square.” But, you ask,

will this construction prescribed in the problem succeed in all cases? For

example, let A be “trilateral,” and B “quadrilateral”; is it not then impossible

to find a concept which shall contain A and B both, and hence to find B @ C
such that it shall contain A © C, since A and B are incompatible ? I reply that

our general construction depends upon the second postulate, in which is con-

tained the assumption that any term and any other term can be put together

as components. Thus God, soul, body, point, and heat compose an aggregate of

these five things. And in this fashion also quadrilateral and trilateral can be put

together as components. For assume D to be anything you please which is not

contained in “trilateral,” as “circle.” Then A @ D is “trilateral and circle,”

which may be called C. But C ® A is nothing but “trilateral and circle” again.

Consequently, whatever is in C @ B is also in “trilateral,” in “circle,” and in

“quadrilateral.” But if anyone wish to apply this general calculus of com-

positions of whatever sort to a special mode of composition, for example, if one

wish to unite “trilateral” and “circle” and “quadrilateral” not only to com-

pose an aggregate but so that each of these concepts shall belong to the same

subject, then it is necessary to observe whether they are compatible. Thus

immovable straight lines at a distance from one another can be added to compose

an aggregate but not to compose a continuum.

Proposition 23. Tivo disparate terms, A and B, being given, to find a third, C,

different from them [and such that A @ B = A®C].
Solution. Assume (by post. 2) C = A @ B, and this satisfies the require-

ments. For since A and B are disparate (by hyp.)—that is (by def. 6), neither is

in the other—therefore (by prop. 13) it is impossible that C = A or C — B.

Hence these three are different, as the problem requires. Thus A @ C =
A ® A ® B (by construction), which (by ax. 2) is = A @ B. Therefore

A @ C = A @ B. Which was to be done.

Proposition 24. To find a set of terms, of any desired number, which differ each

from each and are so related that from them nothing can be composed which is new,

or different from every one of them [i.e., such that they form a group with respect

to the operation @],

Solution. Assume (by post. 1) any terms, of any desired number, which shall

be different from each other, A, B, C, and D, and from these let A @ B = M

,

M @ C = N, and N ® D = P. Then A, B, M, N, and P are the terms required.

For (by construction) M is made from A and B, hence A, or B, is in M, and
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M in N

,

and N in P. Hence (by prop. 16) any term which here precedes is in any
which follows. But if two such are united as components, nothing new arises;

for if a term be united with itself, nothing new arises; L © L = L (by ax. 2).

If one term be united with another as components, a term which precedes will

be united with one which follows, hence a term which is contained with one
which contains it, as L © N, but L ® IV = N (by prop. 14). And if three are
united, as L @ N © P, then a couple, L © N, will be joined with one, P. But
the couple, L © N, by themselves will not compose anything new, but one of
themselves, namely the latter, N, as we have shown; hence to unite a couple,

L © N, with one, P, is the same as to unite one, N, with one, P, which we have
just demonstrated to compose nothing new. And so on, for any larger number
of terms. Q.E.D.

Here follows a segment of paper XIX in Gerhardt’s collection which contains the concept
of “subtraction.”

Theorem 8. If terms which coincide he subtracted from terms which coincide, the

remainders will coincide.

If A = L and B = M, then A - B = L - M. For A - B = A - B (true

per se), and the substitution, on one or the other side, of L for A and M for B.

gives A - B = L. Q.E.D.

[Note in the margin of the manuscript.] In dealing with concepts, subtraction

[detractio] is one thing, negation another. For example, “nonrational man” is

absurd or impossible. But we may say: An ape is a man except that it is not
rational, or [They are] men except in those respects in which man differs from
the beasts, as in the case of Grotius’ iambus [Homines nisi qua Bestiis differt

homo
,
ut in iambo Grotii]. 9 “Man” minus “rational” is something different from

“nonrational man.” For “man” minus “rational” = “brute.” But “non-
rational man” is impossible. “Man” - “animal” - “rational” is Nothing.
Thus subtractions can give Nothing or simple nonexistence—even less than
nothing—but negations can give the impossible.

0 To Professor L. J. Rogier in Nijmegen, Netherlands, I owe the full quotation:

EUCHARISTIA
Proeul profani, qui, quod os et quod manus
Oculique monstrant, nec quid ultra, creditis,

Queis una mens exsensa; ventri obnoxia,
Humoque prona gens, et, ut summam loquar,

Homines, nisi qua bestiis differt homo.
—Hug. Grotii Poemata omnia (ed. quarta; Lugdunum Batavorum, 1645), p. 21

[Away, ye profane, who believe what the mouth and what the hands and eyes show and
not anything beyond, to whom the mind alone is apart from the senses; obedient to the
stomach, and a race prone on the ground, and, to summarize, men, except insofar as man
differs from the beasts.]
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Medieval geometry was mostly taken from Euclid, whose work was partially known through

the widely circulating works of Boethius (sixth century) and which became available

through translations by Gerhard of Cremona, Johannes Campanus, and others in the

twelfth and thirteenth centuries. The first printed Euclid, in the Latin version of Campanus,

was that of Erhard Ratdolt in Venice (1482), a beautiful piece of work with many figures,

and from that time on full or partial editions, in the original Greek and in translations,

appeared in several countries. During the sixteenth century published editions of the

works of Archimedes, Apollonius, and Pappus increased geometrical knowledge and

curiosity.

Goniometry and trigonometry, developed by Arabic-writing authors influenced by

Ptolemy as well as by Indian and Chinese authorities, became part of the Latin inheritance

through Regiomontanus’ De triangulis omnimodis (c . 1464; first printed in Nuremberg,

1533); see Selection III. 2. Because of the absence of a special notation, it kept the

appearance of a particular section of computational geometry. This computational

aspect was strengthened during the sixteenth century by the publication of trigono-

metric tables, culminating in the Opus Palatinum with all six trigonometric functions

tabulated to ten decimal places for every 10", compiled by Georg Joachim Rhaeticus

(Neustadt. 1596).

With Fermat and Descartes a new period opens in the history of geometry. However,

since some scholars see in Oresme’s work an early attempt at coordinate geometry, we begin

with a sample of his writing. At the same time, we should not forget that Ptolemy, in

his Geography (c. a.d. 125), had already explained the measurement of points on the earth

with the aid of latitude and longitude (terms taken over by Oresme). In Oresme’s

time (fourteenth century) Ptolemy’s manuscripts were little known in Europe and not

yet used by cartographers, but Oresme may have consulted a manuscript copy of the

Geography.

At the time of Descartes and Fermat, cartography had become a well-developed mathe-

matical science, and cartographers were accustomed to use many types of map projection

and thus many types of coordinate system. However, there is no evidence that Descartes

and Fermat were influenced by cartography; their starting point was the possibility of

applying the new algebra of the sixteenth century as developed by Cardan and Viete to the

geometry of the ancient Greeks.

133
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1 ORESME. THE LATITUDE OF FORMS

We have taken from medieval authors only those selections (1.1, II. 1) that establish a
direct link with the Arabic world. A special Source Book will be necessary to deal with the
medieval scholastic contribution to science. However, we make an exception for the work
of Oresme, since there are indications that this forms a direct link with Renaissance science.

The study of the Aristotelian categories of quality and quantity focused attention on the
difference between the intensio and remissio of a quality and the increase and decrease of a
quantity. A quantity, as a solid, increases by adding another body to it, but a quality, as
wisdom, is intensified in quite another way, and so is heat, considered a quality before, in

the seventeenth century, thermometry was invented. Another quality was motion, and
change in velocity was widely discussed, notably in the thirteenth and fourteenth centuries.

This gave rise to the application of quantitative ideas to qualities.

One form in which this application occurred was that of calculation which applied the
Euclidean theory of proportions to theological concepts, and to qualities including motion.
There was indeed in the work of some of the Calculators (such as Thomas Bradwardine,
archbishop of Canterbury, c. 1290-1349) a beginning of kinematics. There was also some
work on infinite series in connection with Zeno’s paradoxes, for instance, by Richard
Suiseth, of Merton College, Oxford, c. 1345, called the Calculator; see C. B. Boyer, The
history of the calculus (Dover, New York, 1959). 74-79.

Another form was the geometrical representation of the variability of the intensity of a
quality, and with this is connected the name of Nicole Oresme (c. 1323-1382), M.A. of the
University of Paris (1349), who was dean of Rouen Cathedral (1361-1377) and afterward
Bishop of Lisieux. He represented, as one of the first to do so, such a variable value, and
especially that of a velocity, for any point of a body or for any instant of time by a line

segment plotted in a given direction, and thus drawing the first graph.

We find this idea in several works written by him or ascribed to him, of which the
Tractatus de latitudinibus formarum, probably written by a pupil, was published in Padua
(1482). There were later editions, which show that Oresme’s ideas may have had circulation

among Renaissance mathematicians. He uses the concept of uniformity and difformity
(combined in uniformiter dijformis, uniformly difform), when the change of intensity upon
displacement along the base, the longitudo, is proportional to the amount of this displace-

ment. To every point of the longitudo corresponds a line segment called latitude , indicating

the intensity. The plotted latitudes form a plane surface, and so we obtain the notion of a
“rectangular” heat, when the intensity is uniform, or a “trapezoidal” velocity when the
velocity increases uniformly. The end points of the latitudes form the graph, the linea

summitatis (summit line).

We take our selection from a manuscript by Oresme recently published, Quaestiones super
geometriam Euclides

,
ed. H. L. L. Busard (Brill, Leiden, 1961), with an English translation,

from which we take the vital Question 10. It is preceded in Questions 1-9 by a number of
different topics current in fourteenth-century scholastic mathematics, such as the dis-

cussion ofthe existence of an infinite circle and the commensurability or incommensurability
of the diagonal and the side of a square.

In Question 10 and in the seven following questions Oresme expounds his theory of
latitudines, which was already referred to in the preceding question. The first question he
puts in this connection is : can a quadrilateral be uniformly difform in altitude ? After an
objection has first been advanced, Oresme gives his reply. Next he discusses how the dif-
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ferent qualities can be represented. He concludes the question with a spirited and highly

personal defense, in which he appeals, among others, to Aristotle.

Oresme considers a place or body
(
subjectum

)

in which he takes a straight line segment, the

longitudo, and at each point of it, perpendicular to the segment in a plane through it, a line

segment representing the value of a certain intensity.

Further information on the Calculators and Oresme can be found in E. J. Dijksterhuis,

The mechanization of the world picture (Clarendon Press, Oxford, 1961), 185-200. On the

Quaestiones see also J. Murdock, “ Oresme’s Commentary to Euclid,” Scripta Mathematica 27

(1964), 67-91. and Selection V.9. For other mathematical works by Oresme see his De
proportionibus proportionum and Ad pauca respicientes, ed. and trans. E. Grant (University

of Wisconsin Press, Madison, 1966), and Marshall Clagett, The science of mechanics in the

Middle Ages (University of Wisconsin Press, Madison, 1959), who brings to our attention

that a certain Giovanni di Casali may have used a graph in 1346, hence before Oresme,
whose work dates from between 1348 and 1362 (pp. 332-333, 414).

(a) The altitude of a surface is judged by the line drawn perpendicular to the

base, as might appear from a figure.

(b) A surface is called uniformly or equally high if all the lines by which the

altitude is judged are equal; a surface is called difformly high if these lines are

unequal and extend up to a line not parallel to the base (the summit line).

(c) The altitude is called uniformly difform if every three or more equidistant

altitudes exceed one another in an arithmetical proportion [Fig. 1], i.e., the

first extends as much above the second as the second above the third, from

which it appears that the summit line is a straight line which is not parallel to

the base.

(d) The altitude is called difformly difform if the altitudes do not exceed one

another in this way. In that case their summit line is not straight and the

difformity in altitude varies with the variation of this summit line.
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Furthermore:

(a) Of a quality two things are represented, viz. the intensio per gradum and

the extensio per subjectum, and consequently such a quality is imagined to have

two dimensions.

H. L. L. Busard remarks that this means that the extensity of an extended quality of any

kind can be designated by a line or a plane (called the longitude) described in the subject.

The intensity of the quality from point to point in the subject has to be represented by

lines (called latitudes) erected perpendicular to the longitude of the same quality. The latitude

thus acts as a variable ordinate in a system of coordinates, while the longitude is not to be

identified with the variable abscissa; there is only one longitude with an infinite number of

latitudes. 1

For this reason it is sometimes said that a quality lias a latitude and a

longitude instead of an intensity and an extensity.

(b) A quality may be imagined as belonging to a point or an indivisible subject,

such as the soul, but also to a line and even to a surface and a body.

Conclusion 1 : The quality of a point or an indivisible subject can be repre-

sented by a line, because it has only one dimension, viz. intensity. From this it

follows that such a quality, such as knowledge or virtue, cannot be called uni-

form or difform, just as a line is not called uniform or difform. It also follows

that properly speaking one cannot refer to the latitude of knowledge and virtue,

because no longitude can be associated with it, whereas every latitude pre-

supposes a longitude.

Conclusion 2: The quality of a line can be represented by a surface, of which

the longitude is the rectilineal extensity of the subject and the latitude the

intensity, which is represented by perpendiculars erected on the subject-line.

Conclusion 3 : Similarly the quality of a surface can be represented by a body

of which the length and the breadth form the extensity of the surface and the

depth is the intensity of the quality. For the same reason the quality of a whole

body might be represented by a body of which the length and the breadth would

be the extensity of the whole body and the depth the intensity of the quality.

However, someone might doubt: If the quality of a line is here represented by
a surface and the quality of a surface by a body having three dimensions, the

quality of a body will no doubt be represented by something having four

dimensions in a different kind of quantity.

I say that it is not necessary to give a fourth dimension. In fact, if one

imagines that a punctus fiuens causes a line, a line a surface, a surface a body, it

1 The extensity corresponds to an infinity of intensities.
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is not necessary for a corpus fluens to cause a fourth kind of quantity but only a
body, and because of this Aristotle, in De Caelo I,

2 says that according to this

method of representation no passage from a body to a different kind of quantity
is possible. In the case under consideration one should reason in the same way.

It is therefore necessary to speak of the quality of a line, and analogously it is

considered what has to be said of the quality of a surface or a body.

Conclusion 4: A uniform linear quality can be represented by a rectangle that

is uniformly high, in such a way that the base represents the extensity and the
summit line is parallel to the base.

A uniformly difform quality can be represented by a surface that is uniformly
difformly high, in such a way that the summit line is not parallel to the base.

This can be proved: the intensities of the points of the quality are proportional

to the altitudes of the perpendiculars erected in the corresponding points of the
base.

A quality can be uniformly difform in two ways, just as a surface can be
uniformly difformly high in two ways:

(a) Such a quality may terminate at zero degree and is then represented by a
surface which is uniformly difformly high down to zero, i.e., by a right-angled

triangle;

(
b

)

Such a quality may terminate at both ends at some degree and is then
represented by a quadrilateral, the summit line of which is a straight line not
parallel to the base, i.e., by a right-angled trapezium.

Conclusion 5: By means of the above it can be proved that a uniformly
difform quality is equal to the medium degree [Fig. 2], i.e., just as great as a
uniform quality would be at the degree of the middle point, and this can be
proved in the same way as for a surface. 3

2 This rejection of a fourth dimension is based on Aristotle’s De Caelo, I, 1; 268a31-
268b2. It remains the prevailing attitude in Renaissance days even where, as in Cardan or
Viete, quadratic equations are related to planes and cubic equations to solids (see Selections
II. 3, 5). Despite an occasional remark by Pascal, Wallis, and Lagrange, only the nineteenth
century took the geometry of four dimensions seriously. See Selections III. 3, note 3, and
IV. 12.

3 Conclusion 5 is often referred to as the Mertonian rule. See E. J. Dijksterhuis, The
mechanization of the world picture (Clarendon Press, Oxford, 1961), 197. See also Selection
IV. 4.
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Last conclusion: A difformly difform quality is represented by a surface of

which the line representing the subject is the base, while the summit line is a

nonstraight line, not parallel to the base. Such a difformity may be imagined in

an infinite number of different ways, for the summit line may vary in a great

many ways.

However, someone might say: It is not necessary to represent a quality in this

way. I say that the representation is good, as also appears in Aristotle, 4 for he

represents time by a line. In the same way in Perspectiva the virtus activa is

represented by a triangle. 5 Moreover according to this representation one can

understand more easily what is said about uniformly difform qualities, and

consequently the representation is good.

This means that, since qualities are represented by surfaces, the equality of two surfaces

may also be transferred to the qualities which they represent. In this case, therefore, one

has to prove that surface OCBA = surface OCED, and from this equality it then follows

that the uniformly difform quality that is represented by OCBA is equal to the uniform

quality that is represented by OCED.

2 REGIOMONTANUS. TRIGONOMETRY

Trigonometry was developed into a independent branch of mathematics by Islamic writers,

notably by Nasir ed-din at-Tusi (or Nasir Eddin, 1201-1274). The first publication in Latin

Europe to achieve the same goal was Regiomontanus’ De triangulis omnimodis (On triangles

of all kinds; Nuremberg, 1533).

4 Aristotle, Physica, IV, 11 ; 220a4-20. In lines 2 19b 1-2 Aristotle defines time as “numerus
motus secundum prius et posterius.” Here he tries to explain that the “now-moment,” on
the one hand, divides time into two parts (past-future), but, on the other hand, makes it

continuous. He compares time to a line on which a point makes a division but also con-

stitutes continuity on the line.

5 The virtus activa is the light diffused from the source of light (lumen). Later, in Question

17, Oresme concludes: “ Such a force or such a light extends uniformly difformly, or in other

words: it is a uniformly difform quality. This appears plausible because—since the force

does not extend uniformly—it seems to diminish as the distance increases; this diminution

has to take place proportionally, i.e., uniformly difformly” [Fig. 3]. The Perspectiva men-
tioned is the one written by Witelo (Vitellio), a Polish mathematician of the thirteenth

century, first printed in Nuremberg (1535), a book that was widely read, and on which
Kepler wrote a book, Ad Vitellionem paralipomena (Frankfurt a. M., 1604).
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Johannes Muller (1436-1476), called Regiomontanus from his birthplace, Konigsberg in

Franconia, was an instrument maker, mathematician, astronomer, and humanist who
settled at Nuremberg and died in Rome as adviser to the pope on calendar reform. His

trigonometry, finished in 1464, remained in manuscript until 1533. The book, reprinted at

Basel in 1561, was widely studied during the sixteenth century. It deals with both plane and
spherical trigonometry without using formulas: all theorems and demonstrations are verbal,

with frequent references to Euclid’s Elements. The trigonometric concepts used are the sine

{sinus or sinus rectus) and versed sine
(
sinus versus), conceived as line segments and ex-

pressed as parts of a given radius
(
sinus totus) R = 60.000. 1

The English translation we give of parts of the book is based on that by B. Hughes in

Regiomontanus on triangles (University of Wisconsin Press, Madison, 1967), 59. First our

text leads up to the sine law of plane triangles; then we present Regiomontanus’ way of

stating the cosine law for spherical triangles. In the figures capital letters A, B, .. . are used

instead of Regiomontanus’ a, b, . . . ;
see Fig. 1.

Book I. Theorem 20. In every right triangle, if we describe a circle with center

a vertex of an acute angle and radius the length of the longest side, 2 then the

side subtending this acute angle is the right sine [sinus rectus
]
of the arc adjacent

to that side and opposite the given angle; the third side is equal to the sine of

the complement of the arc.

If a right triangle ABC [Fig. 2] is given with C the right angle and A an acute

angle, around the vertex of which a circle BED is described with the longest

side—that is, the side opposite the largest angle—as radius, and if side AC is

extended sufficiently to meet the circumference of the circle at point E, then

side BC opposite angle BAC is the sine of arc BE subtending the given angle,

and furthermore the third side AC is equal to the right sine of the complement
of arc BE.

1 Hence Regiomontanus’ sinus or sinus rectus of an angle a is our R sin a, and his simis
versus of an angle a is our R versin a — R( 1 — cos a). See Selection 1.4, note 2.

2 Regiomontanus does not use the term “hypotenuse,” herein following Euclid. Neither
does he use the term “trigonometry,” which appears first in the title of the book of Bar-
tolomeus Pitiscus, Trigonometria (Heidelberg, 1595).
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Then, extending BC to CD, just as by definition the entire line BD is the chord of arc

BD, so also its half, namely line BC, is the sine of the half-arc BE opposite angle BAE
or BAC.

Book I. Theorem 28. When the ratio of two sides of a right triangle is given,

its angles can be ascertained.

One of the two sides is opposite the right angle or else none is. First, if side

AB, whose ratio to side AC is known, is opposite right angle ACB, then the

angles of this triangle become known.

For instance, if in triangle ABC (Fig. 1), AB-.BC = 9:7, then multiply 7 into li =
60.000 (the whole right sine, sinus rectus totus) and divide by 9. The quotient, 46667,
corresponds to about 51°3', the value of angle ABC. 3

Book II opens with the sine law for plane triangles.

Book II. Theorem 1. In every rectilinear triangle the ratio of one side to

another side is as that of the right sine of the angle opposite one of the sides to

the right sine of the angle opposite the other side.

As we said elsewhere, the sine of an angle is the sine of the arc subtending that

angle. Moreoever, these sines must be related through one and the same radius

of the circle or through several equal radii. Thus, if triangle ABG [Fig. 3] is a

rectilinear triangle, then the ratio of side AB to side AG is as that of the sine of

angle AGB to the sine of angle ABG
;
similarly, that of side AB to BG is as that

of the sine of angle AGB to the sine of angle BAG.

3 Regiomontanus had sine tables for several values of R, which he may have computed
himself, or taken from other, perhaps Arabic, sources. The table for R = 60.000 was first

published in the Tabulae direclionum projectionumque (Augsburg, 1490). The Basel edition
of De triangulis also has a table.
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If triangle ABG is a right triangle, we will provide the proof directly from

Theorem 1.28 above. However, if it is not a right triangle yet the two sides AB
and AG are equal, the two angles opposite the sides will also be equal and hence

their sines will be equal. Thus from the two sides themselves it is established that

our proposition is verified. But if one of the two sides is longer than the other

—

for example, ifAG is longer—then BA is drawn all the way to D, until the whole

line BD is equal to side AG. Then around the two points B and G as centers, two
equal circles are understood to be drawn with the lengths of lines BD and GA
as radii respectively. The circumferences of these circles intersect the base of the

triangle at points L and E, so that arc DL subtends angle DBL, or ABG, and
arc AE subtends angle AGE, or AGB. Finally two perpendiculars AK and DH,
from the two points A and D, fall upon the base. Now it is evident that DH is

the right sine of angle ABG and AK is the right sine of angle AGB. Moreover,

by VIM of Euclid, 4 the ratio of AB to BD, and therefore to AG, is as that of

AK to DH. Hence what the proposition asserts is certain.

Then follow many applications; for instance, Theorem 2 shows how to find the sides of a

triangle if their sum is known together with the angles opposite them.

Book V. Theorem 2. In every spherical triangle that is constructed from the

arcs of great circles, the ratio of the versed sine of any angle to the difference of

two versed sines, of which one is the versed sine of the side subtending this angle

while the other is the versed sine of the difference of the two arcs including this

angle, is as the ratio of the square of the whole right sine to the rectangular

product of the sines of the arcs placed around the mentioned angle.

In this theorem we recognize, in geometric and hence homogeneous form, the cosine law

for a spherical triangle. We omit the proof, which is quite complicated. In our notation:

R versin a R2

R versin a — R versin (6 — c) R sin b R sin c
’

where a, b, c are the sides and a is the angle opposite a in the spherical triangle on a sphere

of radius R. The expression can be reduced to

cos a = cos b cos c + sin b sin c cos a.

4 Theorem 4 of Book VI of Euclid’s Elements states that in similar triangles corresponding
sides are proportional.
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3 FERMAT. COORDINATE GEOMETRY

Analytic geometry (the term itself, in its present meaning, appears first in the beginning of

the nineteenth century) can be dated back to the works on coordinate geometry by Des-

cartes (1637; Selections II. 7, 8) and Fermat. Fermat’s papers, probably written about the

same time as Descartes’s work, were posthumously published by his son in Varia opera

mathematica (Toulouse, 1679), and thus had less influence than the work of his rival. Both

authors were moved by the same spirit; they wanted to show how the Renaissance algebra

of Cardan and his successors could be applied to the geometry of the Greeks, notably to

Apollonius’ theory of loci as preserved by Pappus. In carrying out their program they

differed in their methods. Fermat used the sixteenth-century notation of Viete, in which,

as we have seen, our Dx — By is written “D in A aequatur B in E,” and in which the homo-

geneity of the formulas is preserved: when D and A represent line segments, then “A in

D aeq. Z pi” stands for “A times 1) is equal to the area Z (Z plane).” Descartes introduced

the notation still in use in which known constant quantities are indicated by the letters

a, b, ...

,

unknown or variable quantities by x, y,

,

their squares, cubes, and so on by

aa — a2
,
a3 , xx = x2

,
x3

,
and so on. Descartes also rejected the homogeneity of the

formulas (see Selections III.4, 5).

Descartes’s discussion consists in giving examples of his method. Fermat, starting with

loci expressed by straight lines and following these with loci expressed by conic sections,

has a method that shows some similarity with our way of introducing analytic geometry.

Both Descartes and Fermat used as an important test case for their methods the so-called

problem of Pappus, found in Book VII of Pappus’ Collection (Synagoge), written at about

the end of the third century a.d. On this problem see M. R. Cohen and I. E. Drabkin, A
source book in Creek science (Harvard University Press, Cambridge, 1948), 79-80, and

T. L. Heath, History of Greek mathematics (Clarendon Press, Oxford, 1921), II, 400-401. 1

Here follows Pappus’ text, which is preceded by a remark that Apollonius, in the third

book of his Conics (c. 220 b.c.). mentions “the locus for three and four lines.” Then Pappus

continues:

“But this locus of three and four lines, of which Apollonius says, in his third book, that

Euclid has not treated it completely, he himself has also not been able to achieve, and he has

not even been able to add anything to what Euclid has written about it . . .

“Here we shall show what is that locus of three and four lines . . . Let three straight lines

be given in position. Let there pass through the same point to these three straight lines

three others at given angles, and let the ratio of the rectangle taken on two of these lines to

the square of the third be given. Then the point will be on a solid line given in position,

that is, on one of the three conics. 2 And if one passes straight lines at given angles to four

straight lines given in position, and if the ratio of the rectangle taken on two of them to

that taken on the other two is given, then the point will also be on a conic section given in

position. On the other hand, if there are only two straight lines, then it is known that the

locus is plane, but if there are more than four lines, then the locus of the point is no longer

1 Pappus’ Collection can be consulted in the French translation by P. Ver Eecke: Pappus
cTAlexandrie. La collection mathematique (2 vols.; Decles de Brouwer, Paris, Bruges, 1933;

Paris, 1959). The quoted text is on pp. 507-510.
2 Pappus distinguishes between plane, solid, and linear problems. The plane problems

require only circles and straight lines for their construction, the solid ones require general

conic sections, and the linear ones require more complex curves. This distinction is taken

over by Fermat as well as by Descartes (see Selection III.4).
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one of those that are known; it belongs to those that we simply call linear loci (without
knowing anything more about their nature or their properties). Nobody has made the syn-
thesis of these loci, nor has anyone shown how they serve as such loci, not even for the one
that would seem to be the first and most obvious. These loci appear in the following
proposition.

If there are six given lines, and the ratio of the solid with three of the drawn lines as
sides to the solid with the other three lines as sides is given, then the point will also be on a
line given in position.

“ If there are more than six lines, then we can no longer say that we give the ratio between
some object based on four lines and another object based on the other lines, because there
is no figure that can be based on more than three dimensions. 3 And yet certain recent
writers have permitted themselves to interpret such things, but when they referred to the
product of a rectangle by a square or a rectangle they ceased being intelligible. Yet they
might have expressed and indicated their meaning generally by means of compound ratios,
both in the case of the previous propositions and in the case of those now under discussion,
in the following way.

Through a point we draw two lines given in position to other lines at given angles, and
the product consisting of the ratio of one of those drawn lines to another, and of the ratio
of another couple of these drawn lines, and that of a third couple, and finally that of the
last drawn line to a (specially) given line—if there are seven lines in all—or of that of the
two last ones, if there are eight of them, is given. Then the point will be on a line given in
position.

“The same can be said for any number of lines, even or odd. But, as I have said, for each
of these loci which follow that for four lines, there has not been made any synthesis which
permits us to know the line.”

The problem of Pappus can be stated in modern terms as follows [Fig. 1] (it is understood
that it is a problem in the plane). If to a line L(x, y) = ax + by + c = 0 a line M is drawn
through a point P(xQ . y0 )

at angle a intersecting the line L = 0 in Q, then PQ = + L(x0 , yQ ) x
cosec a/V« 2 + b 2 = const. L(x0 ,y0 ). Hence if the '2n lines are given by the equations
Li = 0,M

i

= 0, i = 1, 2 n, then the locus of Pis given by the equation L
X
L2 Ln +

\MxM2 Mn = 0, the value of A depending on the given a, and to a solution with
positive A there always corresponds another one with negative A. When 2n - 1 lines are
given. Li = 0, i = 1, . . . ,

n, Ma = 0, a = 1 1, then the locus is given by some

3 Acceptance of a geometry of four dimensions had to wait until the nineteenth century.
See F. Cajori, A history of mathematics (Macmillan, New York, 2d ed., 1938), 184, 256, and
Selection III.l, note 2. The first to build a systematic geometry of more than three
dimensions was H. Grassmann, in his Ausdehnungslehre of 1844.
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equation of the form L 1
L2 Ln + Mk _ 1MkMk + 1 Mn _ x = 0. For n — 2

the locus is a conic section.

It should be noted that in the title of Fermat’s paper selected here: Ad locos pianos et

solidos isagoge (Introduction to plane and solid loci; Oeuvres, I, 92-103, French translation,

III, 85-96), the term “plane locus” refers to a locus that can be constructed with the aid

of straightedge and compass only, the term “solid locus” to one in which a conic section

different from a circle or a straight line appears. When curves of degree higher than two

appeared, the problem, or locus, was called linear. These terms appear in Pappus, and not

only Fermat but also Descartes and others used them (see Selection III.4). A modern

translation of the title would be: Introduction to loci consisting of straight lines and curves of

the second degree.

There is no doubt that several ancient authors have written on loci, witness

Pappus, who, at the beginning of his seventh book, states that Apollonius had

written on plane loci and Aristaeus on solid loci.
4 But it seems that to them the

study of loci did not come quite easily; this we gather from the fact that for

several loci they did not give a sufficiently general account, as will be clarified

by what follows here.

We shall therefore submit this science to an appropriate and particular

analysis, so that from now on a general way to the study of loci shall be opened.

As soon as in a final equation
[
aequalitas

]
two unknown quantities appear,

there exists a locus, and the end point of one of the two quantities describes a

straight or a curved line. The straight line is the only one of its kind, but the

types of curves are infinite: a circle, a parabola, a hyperbola, an ellipse, etc.

Whenever the end point of the unknown quantity describes a straight line or

a circle, we have a plane locus; when it describes a parabola, hyperbola, or

ellipse, then we have a solid locus; if other curves appear, then we say that the

locus is a linear locus [locus linearis]. We shall not add anything to this last case,

since the study of the linear locus can easily be derived from that of plane and

solid ones by means of reductions.

The equations can be easily visualized [institui], when the two unknown

quantities are made to form a given angle, which we usually take to be a right

one, with the position and the end point of one of them given. Then, if no one

of the unknown quantities exceeds a square, the locus will be plane or solid, as

will be clear from what we shall say.

Let NZM be a straight line given in position, N a fixed point [Fig. 2] on it.

Let NZ be one unknown quantity A, and the segment ZI, applied to it at given

angle NZI, be equal to the other unknown quantity E. When D times A is equal

to B times E

,

the point I will describe a straight line given in position, since B
is to D as A is to E. 5 Hence the ratio of A to I? is given, and, since the angle at

Z is given, the form of the triangle NIZ, and with it the angle INZ, is given.

But the point N is given and the straight line NZ is given in position: hence NI
is given in position and it is easy to make the synthesis

[
compositio].

4 Aristaeus flourished about the end of the the fourth century B.c.

5 D in A aequetur B in E, ut B ad D, ita A ad E. Let A — x — NZ, E = y = ZI; then

Dx = By, or It : D = x : y, which is the equation of line NI.
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To this equation all equations can be reduced of which the terms \homogenea

\

are partly given, partly mixed with the unknowns A and E, either multiplied
with the given quantities, or appearing simply. Let Z pi - D times A equal
B times E. Let D times R be Z pi. Then we will find that B is to D as R - A is

to E. Let us take MN equal to R. then point M is given, hence MZ is equal to
R - A. Hence the ratio of MZ to Z1 is known, but the angle at Z is given,
hence also the form of the triangle IZM. We conclude that the straight line MI
is given in position. Thus point / will be on a straight line given in position. 6

We reach the same result without difficulty for any equation containing the
terms A and E.

This is the first and simplest equation of a locus, by means of which all the
loci dealing with a straight line can be found; see, for example, the seventh
proposition of Book I of Apollonius On plane loci, which has since found a more
general formulation and construction. This equation also leads to the following
elegant proposition, which we discovered with its help:

Let any number of straight lines be given in position. From some point draw
to them straight lines at given angles. If the sum of the products of the lines
thus drawn with the given lines is equal to a given area, then the point will be
on a straight line given in position. 7

6 When Z - Dx = By (Z, Dx, By are rectangles), then if Z = DR
(R a line), D(R — x) =

By^ or B : D = {R — x)
: y; Z pi, we have seen, means Z is a plane (area).

7 Fermat was one of the mathematicians who tried to reconstruct Apollonius’ book On
plane loci with the aid of the detailed accounts of it preserved by Pappus. Fermat’s recon-
struction is in the Oeuvres, I, 3-51. Proposition 7 is: “If through two given points at a given
angle two lines are led in given ratio, and the endpoint of one line stays on a plane locus
[hence a straight line or circle] given in position, then this will be the same for the endpoint
ot the other. c

Hence, if A and B (Fig. 3) are the given points, AH and BD are drawn at the given angleAKB and AH/BD is in the given ratio, then, if H moves on line HO, D moves on the
straight line DE. Here AO J_ HO, BE J_ ED. This follows from AH\BD = AO/BE.
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We omit a great number of other propositions, which could be considered as

corollaries to those of Apollonius.

The second species of equations of this kind are of the form

A times E is Z pi, 8

in which case point I traces a hyperbola. Draw NR parallel to ZI; through any

point, such as M, on the line NZ, draw MO parallel to ZI. Construct the rec-

tangle NMO equal in area to Z pi. Through the point 0, between the asymp-

totes NR, NM, describe a hyperbola; its position is determined and it will pass

through point I, since we have assumed, as it were, AE—that is to say, the

rectangle NZI—eqinvalent to the rectangle NMO [Fig. 4].

To this equation we may reduce all those whose terms are in part constant,

or in part contain A or E or AE.

If we let

D pi + A times E equal R times A + S times E,

then we obtain, by well-known methods,

R times A + S times E — A times E equal D pi.

Let us construct a rectangle on two sides such that the terms R times A + 8

times E — A times E are contained in it; then the two sides will be A — S and

R — E and the rectangle on them will be equal to R times .4 + S times E —

A times E — R times E.

If now we subtract R times S from D pi, then the rectangle on A — S and

R — E will be equal to D pi — R times S.

Take NO equal to S and ND, parallel to ZI. equal to R. Through point I).

draw DP parallel to NZ; through point 0, draw OV parallel to ND; prolong

ZI to P [Fig. 5],

xy = Z.
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Since NO = S and NZ = A, we have A - 8 = OZ = VP. Similarly, since
N

D

— ZP = R and ZI = E

,

we have R — E = PI. The rectangle on PV and
P! is therefore equal to the given area D pi - R times E. The point I is there-
fore on a hyperbola having PV, VO as asymptotes. 9

If we take any point X. the parallel XY, and construct the rectangle VXY

,

and through point Y we describe a hyperbola between the asymptotes P V, VO,
it will pass through point I. The analysis and construction are easy in every
case.

The next species of equations for loci arises if we have A 2 equal to E2
,
or in

given ratio to E2
, or, again if A 2 + A times E is in given ratio to E2

. Finally this
type includes all the equations whose terms are of the second degree containing
either A 2

,
E2

,
or the rectangle on A and E. In all these cases the point / traces a

straight line, as can easily be demonstrated. 10

Other cases leading to a straight line are (x2 + xy)
: y

2 = a2
: b2 (Fermat considers only

positive values). Then it is shown that the cases which we write in the form x2 = ay,
y = ax, b2 — x2 = ay, b 2 + x2 = ay all lead to parabolas. Then follows b 2 — x2 = y

2
,

which leads to a circle, as well as b2 — 2ax — x2 = y
2 + Icy.

But if Bq - Aq is to Eq in a given ratio, then the point / will be on an
ellipse.

Let MN be equal to B. and let an ellipse be described with M as vertex, N

M

as diameter, and N as center, of which the ordinates
[applicatae] are parallel to

the straight line ZI. The squares of the ordinates must have a given ratio to the
rectangle formed by the segments of the diameter. Then the point / will be on
this ellipse. Indeed, the square on NM - the square on NZ is equal to the
rectangle formed by the segments of the diameter [Fig. 6],

11

9 Let D + xy = Rx + Sy, then Bx + Sy - xy = D, or (x - S)(R - y) = D - BS,
reducible to the case of note 6.

10 x2 = y
2

, x2 :y2 = a2
: b2

, (x2 + xy) :y 2 = a2
: b2 all lead to straight lines.

11 This is the case (ft
2 - x2

)
: y

2 = p2
: q

2
. If MN = b = M'N, NZ = x, then

(b - x)(b + x)/y = const. = (MZ :M'Z)/IZ. This way of defining an ellipse is found, for
instance, in Archimedes.
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To this equation can be reduced all those in which Aq is on one side of the

equation and Eq with an opposite sign and a different coefficient on the other

side. If the coefficients are the same and the angle a right angle, the locus will

be a circle, as we have said. If the coefficients are the same, but the angle is not

a right angle, the locus will be an ellipse.

Moreover, though the equations include terms which are products of A or E
by given magnitudes, the reduction may nevertheless be made by the artifice

which we have already employed.

When
(
b2 + x2 ) :y

2
is a given ratio, I lies on a hyperbola. Then follows “the most dif-

ficult of all equations,” which contains not only x2 and y
2

,
but also xy. Fermat analyzes the

case b2 — 2x2 = 2xy + y
2

,
which, as he shows, represents an ellipse.

Finally Fermat returns to Apollonius’ book on plane loci, and at the end solves one more

problem on loci:

A single example will suffice to indicate the general method of construction.

Given two points N and M, required the locus of the points such that the sum

of the squares of IN, IM shall be in a given ratio to the triangle INM [Fig. 7].

v

Let NM = B, let E be the line ZI drawn at right angles to NM, and let A be

the distance NZ. According to well-known methods we find that A 2 bis + B2

— B times A bis + E2 bis is to rectangle B times E in a given ratio. 12 Follow-

ing in treatment the procedures previously explained we have the suggested

construction.

12 NM = B,ZI = E = y,NZ = A=x. Then (2a:
2 + B2 — 2Bx + 2y) : By = const.
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Bisect NM at Z; erect at Z the perpendicular Z V
;
make the ratio 4ZV to

N

M

equal to the given ratio. On VZ draw the semicircle VOZ, inscribe ZO equal
to ZM

,
and draw VO. With V as center and VO as radius draw the circle 01R.

If from any point R on this circle, we draw RN, RM, I say that the sum of the
squares of RN and RM is in the given ratio to the triangle RNM.
The constructions of the theorems on loci could have been much more

elegantly presented if this discovery had preceded our previous revision of the
two books On plane loci. Yet, we do not regret this work, however precocious or
insufficiently ripe it may be. In fact, there is for science a certain fascination in
not denying to posterity works that are as yet spiritually incomplete; the labor
of the work, at first simple and clumsy, gains strength as well as stature through
new inventions. It is quite important that the student should be able to discern
clearly the progress which appears veiled as well as the spontaneous develop-
ment of the science.

4 DESCARTES. THE PRINCIPLE OF NONHOMOGENEITY

Descartes, as we have seen (Selections II. 7, 8), presented his application of algebra to geom-
etry in the Oeometrie, published in 1637 as Appendix I to his Discours de la methode. We
present here the beginning of Book I of this Geometrie, where Descartes explains his principle
of nonhomogeneity

,
based on the proportions 1 : a = a: a2

,
a: a 2 = a2

: a3
, and so on

,
which

leads him to a notation that is substantially the same as we use in our modern theory of
equations, in which we have no hesitation in writing, say, x3 + ax2 + bx + c = 0 instead
of x3 + ax2 + b2x + c

3 = 0, and use x, y, z for the unknowns, a, b, c for the given quanti-
ties. Descartes then applied his reformed algebra to the geometry of the Ancients, which led
to coordinate geometry. Our translation is based on the same Smith-Latham text on which
Selection II.8 is based. The title of Book I is Problems the construction of which requires only
straight lines and circles.

All problems in geometry can easily be reduced to such terms that a knowl-
edge of the lengths of certain straight lines is sufficient for their construction.

Just as arithmetic consists of only four or five operations, namely, addition,
subtraction, multiplication, division, and the extraction of roots, which may be
considered a kind of division, so in geometry, to find required lines it is merely
necessary to add or subtract other lines; or else, taking one line which I shall
call the unit in order to relate it as closely as possible to numbers, and which
can in general be chosen arbitrarily, and having given two other lines, to find a
fourth line which shall be to one of the given lines as the other is to the unit
(which is the same as multiplication); or, again, to find a fourth line which is to
one of the given lines as the unit is to the other (which is equivalent to division);
or, finally, to find one, two, or several mean proportionals between the unit and
some other line (which is the same as extracting the square root, cube root, etc.,
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of the given line). And I shall not fear to introduce these arithmetical terms into

geometry, for the sake of greater clarity.

For example, let AB [Fig. 1] be taken as the unit, and let it be required to

multiply BD by BC. I have only to join the points A and C, and draw DE
parallel to CA

;
then BE is the product of BD and BC.

If it be required to divide BE by BD, I join E and D, and draw AC parallel

to DE
\
then BC is the result of the division.

Or, if the square root of GH [Fig. 2] is desired, I add, along the same straight

line, FG equal to the unit; then, bisecting FH at K, I describe the circle FIH
about A as a center, and draw from G a perpendicular and extend it to I, and

GI is the required root. I do not speak here of cube root, or other roots, since I

shall speak more conveniently of them later.

I

Fig. 2

F G K H

Often it is not necessary thus to draw the lines on paper, but it is sufficient to

designate each by a single letter. Thus, to add the lines BD and GH, I call one

a and the other b, and write a + b. Then a — b will indicate that b is subtracted

from a; ab that a is multiplied by b; alb 1 that a is divided by b; aa or a2 that a

is multiplied by itself; a3 that this result is multiplied by a, and so on, indefi-

nitely. Again, if I wish to extract the square root of a2 + b2
,
I write X''a

2 + b2
;

if I wish to extract the cube root of a3 — b3 + abb, I write a3 — b3 + abb
,

2

and similarly for other roots. Here it must be observed that by a2
,
b3

,
and similar

expressions, I ordinarily mean only simple lines, which, however, I name

squares, cubes, etc., so that I make use of the terms employed in algebra.

It should also be noted that all parts of a single line should as a rule be

expressed by the same number of dimensions, when the unit is not determined

in the problem. Thus, a3 contains as many dimensions as abb or b3
,
these being

the component parts of the line which I have called a3 — b3 + abb. It is not,

however, the same thing when the unit is determined, because it can always be

understood, even where there are too many or too few dimensions; thus, if it be

Descartes writes T •

b

2 Descartes writes VC .a3 — b 3 + abb.



152
|

III GEOMETRY

required to extract the cube root of a2b2 — b, we must consider the quantity
a2b2 divided once by the unit, and the quantity b multiplied twice by the unit.

Finally, so that we may be sure to remember the names of these lines, a
separate list should always be made as often as names are assigned or changed.
For example, we may write AB = 1, that is AB is equal to 1; GH = a, BD = b,

and so on. 3

If, then, we wish to solve any problem, we first suppose the solution already
effected, 4 and give names to all the lines that seem needful for its construction

—

to those that are unknown as well as to those that are known. Then, making no
distinction between known and unknown lines, we must unravel the difficulty

in any way that shows most naturally the relations between these lines, until we
find it possible to express a single quantity in two ways. This will constitute
what we call an equation, since the terms of one of these two expressions are

equal to those of the other. And we find as many such equations as there are

supposed to be unknown lines; but if, after considering everything involved, so

many cannot be found, it is evident that the question is not entirely determined.
In such a case we may choose arbitrarily lines ofknown length for each unknown
line to which there corresponds no equation.

If there are several equations, we must use each in order, either considering

it alone or comparing it with the others, so as to obtain a value for each of the
unknown lines; and so we must combine them until there remains a single

unknown line which is equal to some known line, or whose square, cube, fourth
power, fifth power, sixth power, etc., is equal to the sum or difference of two or

more quantities, one of which is known, while the others consist of mean pro-

portionals between unity and this square, or cube, or fourth power, etc.,

multiplied by other known lines. I express this as follows:

z = 6,

s3 = az2 + bbz — c3
,

or

z4 = az3 — c3
z + di

,
etc.

That is, 2
,
which I take for the unknown quantity, is equal to 6; or, the square of

z is equal to the square of 6 diminished by the square of 2
,
plus the square of 6

multiplied by z, diminished by the cube of c; and similarly for the others.

Thus, all the unknown quantities can be expressed in terms of a single

quantity, whenever the problem can be constructed by means of circles and
straight lines, or also by conic sections, or even by some other curve only one or

two degrees more composed.

But I shall not stop to explain this in more detail, because I should deprive
you of the pleasure of mastering it yourself, as well as of the advantage of
training your mind by working over it, which is in my opinion the principal

benefit to be derived from this science. Because I find nothing here so difficult

3 Descartes writes AB yo 1, etc.; see Selection II. 8, note 3.
4 This is the “analysis” of Pappus, see Selection II. 5.
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that it cannot be worked out by any one at all familiar with ordinary geometry

and with algebra, who will consider carefully all that is set forth in this treatise.

That is why I shall content myself with the statement that if the student, in

solving these equations, does not fail to make use of division wherever possible,

he will surely reach the simplest terms to which the problem can be reduced.

And if it can be solved by ordinary geometry, that is, by the use of straight

lines and circles traced on a plane surface, when the last equation shall have

been entirely solved there will remain at most only the square of an unknown

quantity, equal to the product of its root by some known quantity, increased or

diminished by some other quantity also known. 5 Then this root or unknown

line can easily be found. For example, if I have z2 = az + bb, I construct

[Fig. 3] a right triangle NLM with one side LM
,
equal to b, the square root of the

known quantity bb, and the other side, LN

,

equal to \a, that is to half the other

known quantity which was multiplied by z, which I suppose to be the unknown

line. Then prolonging MN, the hypotenuse [la baze
]
of this triangle, to 0, so

that NO is equal to NL, the whole line OM is the required line z. It is expressed

in the following way:

z = + V \aa + bb.

But if I have yy = — ay + bb, where y is the quantity whose value is desired,

I construct the same right triangle NLM, and on the hypotenuse MN lay off

NP equal to NL. and the remainder PM is y, the desired root. Thus I have

y = — \a + V \aa + bb.

In the same way if I had

xi = — ax2 + b2
,

PM would be x2 and I should have

x — \/ — + V\aa + bb,

and so for other cases.

5 Hence z2 — az ± b.
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Finally, if I have z

2

= az - bb, I make NL equal to \a and LM equal to b

as before; then [Fig. 4], instead of joining the points M and N, I draw MGR
parallel to LN, and with AT

as a center describe a circle through L cutting MG

R

N

Fig. 4
L M

in the points G and R\ then z, the line sought, is either MG or MR. for in this

case it can be expressed in two ways, namely,

z = \a + yj\aa — bb

and

z = \a — V\au — bb.

And if the circle described about N and passing through L neither cuts nor
touches the line MGR

,

the equation has no root, so that we may say that the
construction of the problem is impossible. 6

These same roots can be found by many other methods. I have given these

very simple ones to show that it is possible to construct all the problems of

ordinary geometry by doing no more than the little covered in the four figures

that I have explained. This is one thing which I believe the ancient mathemati-
cians did not observe, for otherwise they would not have put so much labor
into writing so many books in which the very sequence of the propositions shows
that they did not have a sure method of finding them all, but rather gathered
those propositions on which they had happened by accident.

Then Descartes takes up Pappus problem (see Selection III. 3) for the case of four lines.

Here he introduces (Fig. 5) two segments AB and BC which he calls AB = x, BC = y. At
this point he introduces what later would be called (oblique) coordinates. The four lines

are AB, AD, EF, GH, to which at given angles are drawn from C the lines OB. CD, CF,
and CH. He expresses the locus as an equation of the second degree. After some remarks on
the case of more than four lines, he goes on to Book II (see Selection III.5).

6 Descartes here follows the common practice of his day, which considered only the types
z2 -f az — b2 = 0, z2 — az — b2 = 0, and z2 — az + b2 = 0 of quadratic equations, ignor-
ing the type z2 + az + b2 = 0, since it has no positive roots (a is a segment, hence positive).
Only much later (Newton) did mathematicians begin to associate coordinates with negative
numbers. All coordinates in Descartes are positive. The name “coordinate” does not appear
in Descartes; this term is due to Leibniz.
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5 DESCARTES. THE EQUATION OF A CURVE

In his Geometrie of 1637, Descartes applied his reformed algebra (see Selection II. 7) to the

geometry of the Ancients. In Book I he applies his coordinate method to Pappus’ problem

(see the previous Selection). The required locus can then be expressed by a relation between

two variables which he denotes by x and y and in which we recognize oblique “Cartesian”

corodinates.

“Since there is only one condition to be expressed ... we may give any value we please

to either the one or the other of the unknown quantities x or y, and find the value of the

other from this equation. It is evident that when no more than five lines are given, the

quantity x, which is not used to express the first of the lines, can never be of degree

[idimension
]
higher than the second. Assigning thus a given value to y, we have only x2 =

±ax + b2
[
il ne restera que xxzo + ou — ax + ou — bb], and therefore the quantity x can

be found with ruler and compasses, by a method already explained” (Smith and Latham,

The geometry of Rene Descartes, p. 34; see Selection II. 8).

Then, in Book II, after a classification of the problems of geometry into plane, solid, and

linear ones (according to Pappus; see Selection III. 2). Descartes suggests that a further

classification of these “linear” curves is desirable, but that the classical distinction between

geometrical and mechanical curves does not seem justified, since circles and straight lines

can also be considered instruments [machines]. He then discusses some of these mechanical

ways of describing a curve, and gives
( (pp. 49-55 of the Smith-Latham translation) the

following example of his coordinate method:

I wish to know the genre 1 of the curve EC [Fig. 1], which I imagine to be

described by the intersection of the ruler GL and the rectilinear plane figure

CNKL, whose side KN is produced indefinitely in the direction of C, and which,

1 Earlier in Book II, Descartes has defined the genre of a curve. In our terms: If an alge-

braic curve has degree 2n — 1 or 2n, its genre is n. This terminology may have been inspired

by the problem of Pappus. Newton (see Selection III. 8) translates genre by genus.
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being moved in the same plane in such a way that its side KL always coincides

with some part of the line BA (produced in both directions), imparts to the

ruler GL a rotary motion about G (the ruler being so connected to the figure

CNKL that it always passes through L ).
2 If I wish to find out to what genre this

curve belongs, I choose a straight line, as AB, to which to refer all its points,

and in AB I choose a point like A at which to begin the calculation. I say that
I choose the one and the other, because we are free to choose them as we like,

for while it is necessary to use care in the choice in order to make the equation
as short and simple as possible, yet no matter what line I should take instead of

AB the curve would always prove to be of the same genre, a fact easily demon-
strated.

Then I take on the curve an arbitrary point, as C, at which I will suppose that
the instrument to describe the curve is applied. Then I draw through C the line

CB parallel to GA

.

Since CB and BA are unknown and indeterminate quantities,

I shall call one of them y and the other x. But in order to find the relation be-

tween these quantities I consider also the known quantities which determine the

description of the curve, as GA, which I shall call a\ KL, which I shall call b;

and NL, parallel to GA, which I shall call c. Then I say that as NL is to LK, or

as c is to b, so CB, or y, is to BK, which is therefore equal to - y. Then BL is

equal to -y — b, and AL is equal to x + -y — b. Moreover, as CB is to LB,

that is, as y is to - y — b, so AG or a is to LA or x H— y — b. Multiplying the

second by the third, we get — y — ab equal to
c

xy + -yy - by,
C

2 The instrument thus consists of three parts: (1) a ruler AK of indefinite length, fixed in
the plane; (2) a ruler GL, also of indefinite length, passing through a pivot G in this plane
(but not on AK); and (3) a triangle LNK, KN indefinitely extended toward KG, to which
the ruler GL is connected at L go as to make the triangle slide with its side KL along AB.
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which is obtained by multiplying the first by the last. Therefore, the required

equation is

cx
yy = cy - j y + ay - ac.

From this equation we see that the curve EC belongs to the first genre, it being,

in fact, a hyperbola.

If in the instrument used to describe the curve we substitute for the straight

line CNK this hyperbola or some other curve of the first genre lying in the plane

CNKL, the intersection of this curve with the ruler GL will describe, instead of

the hyperbola EC, another curve, which will be of the second genre.

Thus, if CNK be a circle having its center at L. then we shall describe the

first Conchoid of the Ancients, 3 while if we use a parabola having KB as

diameter we shall describe the curve which, as I have already said, is the first

and simplest of the curves required in the problem of Pappus, that is, the one

which furnishes the solution when five lines are given in position. 4

Then Descartes continues with his solution of the problem of Pappus, which leads him to

the consideration of conic sections and other curves with several types of equations, such as

y
2 = 2y — xy + rx — x2

,

y
3 — 2ay2 — a2

y + 2a3 = axy,

x2

y
2 — by2 — cdy + bed + dxy = 0.

Here also is Descartes’s method of finding the equation of a normal to a curve. This

method was in a sense opposed to that of Fermat, whose method was based on finding first

the equation of a tangent to a curve (see Selection IV. 8) and thus came close to the idea of

a derivative.

Book III of the Geometrie contains algebra; see Selection II. 7.

6 DESARGUES. INVOLUTION AND PERSPECTIVE TRIANGLES

Girard Desargues (1593-1662) was an architect and military engineer, who lived at Lyons,

and for some time also at Paris, where he met other mathematicians, including Descartes.

His work in the field of perspective, in which he derived many sweeping generalizations, was

3 Pappus mentions four types of conchoid (shell curves); the first is the one we still call a
conchoid, in polar coordinates r = a + b sec 9. It is a curve of the third degree, therefore

of the second genre of Descartes.
4 This is also a curve of the second genre.
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little appreciated in his day, the more so since he used a peculiar technical language largely

borrowed from botany. This was the time when under Descartes’s and Fermat’s influence

algebra and infinitesimal methods were applied to geometry, so that the more general
appreciation of purely geometric methods had to wait until in the nineteenth century
projective geometry was developed. Many of these projective concepts are found in the
Brouillon proiect d’une atteinte aux evenemens des rencontres du Cone avec un Plan, par
L. S. G. D. L., which “ Le Sieur Girard Desargues Lyonnais ” published in 1639 in 50 copies.

All were lost until 1845 when Professor Michel Chasles at Paris discovered a transcript made
in 1679 by the mathematician Philippe de La Hire, a pupil of Desargues. This copy was
published in the Oeuvres de Desargues, ed. N. G. Poudra (2 vols.; Leiber, Paris, 1864), I.

103-230. Around 1950 an original copy was found in the Bibliotheque Nationale in Paris,

which has been utilized in the edition of the Brouillon proiect in R. Taton, L’Oeuvre mathe-
matique de G. Desargues (Presses Universitaires, Paris, 1951). The central concept of the
Brouillon proiect is that of involution, and of all the technical terms introduced by Desargues
this is the only one that has survived.

Three pairs of points on a line in involution had already been discussed in Pappus’
Mathematical collection, in his commentary on a lost book by Euclid, On porisms. Whatever
Pappus’ influence on Desargues may have been, Desargues’s exposition remains highly
original. Here follow some parts leading up to involution and some applications. It may help
to translate some of Desargues’s terms into modern language.

Ordinance of straight lines

(Ordonnance de lignes droites)

Top of an ordinance

(But d’une ordonnance)

Trunk (Tronc)

Knots (Noeuds)

Branch (Rameau)

Twig (Brin)

Engaged or disengaged common point

(Point commun engage ou degage)

Point pair mixed with another pair

(Points d’un couple meles aux points

d’un autre couple)

Unmixed (Demeles)

Rectangle of segments

(Rectangle de pieces)

Rectangles relative to each other

(Rectangles relatifs entre eux)

Twin rectangles

(Rectangles gemeaux entr’eux)

Pencil of lines

Top of pencil

Straight line with points on it

Points on a line (also: ends of a segment) through
which pass other lines

Each of these lines, hence ray

Segment on one of the lines

Point on or outside the segment

Point pairs on a line forming overlapping

segments

When the segments do not overlap

Product of segments

When there are 4 points AA'BB' on a line:

A'BA'B' and AB AB'

When there are 6 points, AA'BB'CC on a line:

Products as A'B A'B' and A'C A'C'

Some definitions follow in Desargues’s language. Two pairs of points CG and DF are given
on a line.
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Points of a pair mixed with those of another pair

.

To indicate the way the points

of one of these couples are situated with respect to the points of the other

couple [Fig. 1]: When one of the points of one pair C is between and its mate

F c D G

F C G D

F D C G

(accouple) G is outside the points of the other pair, then we say here that the

points of one of the pairs are mixed with the points
[
meslez aux poinds

]
of the

other pair . . .

Points of a pair unmixed with the points of another pair. When the points of

one pair lie both similarly either between or outside the points of the other pair,

then we say here that the points of one pair are unmixed with the points of the

other pair.

Tree. When there exists on a straight line AH [Fig. 2] a point A common to

and similarly engaged or disengaged to the two segments of each of the three

pairs AB, AH; AC, AG; AD, AF, of which the rectangles are all equal, then

such a condition on a straight line is here called a Tree [Arbre], of which the line

itself is the Trunk [Tronc]. 1

Stump. The point, such as A, common to each of the six segments AB, AH,
AC, AG, AD, AF is called the Stump [Souche]

.

Branch. Each of these same six segments AB, AH, AC, AG, AD, AF is called

a Branch [
Branche ].

Involution. And when on a straight line AH [Fig. 3] there exist three pairs of

points BH, CG, DF situated in such a way that the two points of each of the

FlS- 3 A G D B H F C~

pairs are either both mixed or unmixed with the two points of the other pairs,

and such that the rectangles thus relative to the segments between these points

are in the same ratio to each other as their twins, taken in the same order, are in

ratio to each other; then such a disposition of the three pairs of points on a

straight line is here called Involution. 2

1 This is the first definition of involution, with the aid of the stump (central point, souche)

A, as follows: AB x AH = AC x AO = AD x AF.
2 Two pairs as OB, OF, or OB, OH, where D and F, B and H, each belong to the same

pair and O to another, are called twins [couples de brins gemelles entre elles]. Hence this

definition of involution is that
CB x CH
OB x OH

CB x CF
OB x OF

AC
AO’

where A is the central point.

This second definition, independent of the central point A
,
is equivalent to the modern way

of saying that the cross ratios (OC, AB) and
(OC ,

FH) are equal. Desargues gives a rather

complicated proof of the identity of the two definitions.
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Desargues now studies the elliptic and hyperbolic cases and then introduces the harmonic

set, which he calls four points in involution.

Four points in involution. We may conceive the words four points in involution

to express two cases
[
evenements

]
of the same sort, since one or the other of these

two events results: the first where four points on a line each at a finite distance

yield three consecutive segments of which either end segment is to the middle

one as the sum of the three is to the other end segment, and the second in which

three points are at finite distances on a line with a fourth point at an infinite

distance, in which case the points likewise yield three segments of which one end
segment is to the middle segment as the sum of the three is to the other end

segment. This is incomprehensible and seems at first to imply that the three

points at a finite distance yield in this case two segments that are equal to each

other with the midpoint as both stump and endpoint coupled at an infinite

distance.

Thus we should take careful note that a line which is bisected and then pro-

duced to infinity is one of the cases of the involution of four points.

Now follow many theorems on harmonic point sets, in rather complicated form. Then,

after having introduced pencils of rays in involution, and having demonstrated what we
call the property of projectivity of an involution, Desargues continues with metric properties

of such pencils.

Mutually corresponding rays [Rameaux correspondans entre eux]. In the case

of but four points B, D, G, F [Fig. 4] in involution on a line through which there

Fig. 4

pass four rays BK, DK, GK, FK radiating in a pencil from the point K, the

pairs of rays DK, FK or GK, BK that pass through the corresponding points

D, F or B, G are here called corresponding rays.

In this case, when the two corresponding rays BK, GK are perpendicular to

each other, they bisect each of the angles between the other two corresponding

rays DK, FK.
Since the line Df was drawn parallel to any one of the rays BK which is
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perpendicular to its corresponding ray GK, the line Df is also perpendicular to

the ray GK.
Furthermore, because of the parallelism of B

K

and Df, the ray GK bisects

Df at the point 3.

Thus the two triangles K3D, K3f each have a right angle at the point 3, and

they have the sides 3K, 3D, and 3K, 3/ which include the equal angles K3D, K3f
equal to each other.

Since the two triangles K3.D, K3/ are equal and similar, the ray GK bisects

one of the angles DKF between the corresponding rays DK, FK, and the ray

BK clearly bisects the other of the angles made by the same corresponding rays

DK, FK.
When any one of the rays GK bisects one of the angles DKF between the two

other mutually corresponding rays DK, FK, this ray GK is perpendicular to its

corresponding ray BK which also bisects the other angle included by the corre-

sponding rays DK, FK.
This is true since when the line Df was drawn perpendicular to any ray GK.

the two triangles K3D and K3f each have a right angle at the point 3 and fur-

thermore each has an equal angle at the point K and also a common side K3,

consequently they are similar and equal and the ray GK bisects Df at the point 3.

Therefore, the ray BK is parallel to the line Df and it also is perpendicular to

the corresponding ray GK.

When in a plane, there is a pencil of four lines BK, DK, GK, FK from the

vertex K, and when two of these lines as BK and GK are mutually perpendicular

and bisect each of the angles which the two others FK, DK make, it follows that

these four lines cut any other line BDGF lying in their plane in four points

B. D, G, F which are arranged in involution.

When a line FK in a plane bisects one of the sides Gb of the triangle BGb at/,

and when through the point K which is thus determined on one of the other

two sides Bb there passes another line KD parallel to the bisected side Gb, the

four points B, D, G, F determined by this construction on the third side BG of

the triangle are in involution. 3

When from the angle B which subtends the bisected side Gb there passes

another line Bp parallel to the bisected side Gb, the four points F,f, K, p deter-

mined on the line FK by the three sides BG, Gb, Bb of the triangle BGb and the

line BP are themselves in involution.

And in the second case, by drawing the line Bf in a way similar to the line GB,

the three points G, f,b at a finite distance and the point at infinite distance are

in involution, since to these pass four branches of a pencil whose vertex is at B
and which consequently determines on the line FK four points F, f, K, p in

involution.

Then as the line FGB cuts on the line bf a segment Gf equal to the segment

bf, the side of a triangle such as bfK, this is equivalent to saying that this line

FGB is double the side bf of the triangle bfK.

When in a plane a line FGB is double one of the sides bf of a triangle bfK, and

when from the point B which it determines on either side bK of the two other

3 Construction of the fourth ray of a harmonic pencil.
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sides of the same triangle, there passes a line Bp parallel to the double side bf,

then this construction yields on the third side Kf of the triangle bfK, four

points F,f, K, p which are in involution.

This is evident when the line BF is drawn.

When from the angle K subtended by the double side bf there passes a line

KD parallel to the double side bf,
this construction gives on the line FB four

points F, B
, D, G which are in involution, as is evident when the line KG is

drawn.

This theory swarms with similar means of deciding when four or three pairs

of points are in involution on a line, but these are sufficient to open the mine of

that which follows.

The last part of the Brouillon deals mainly with the polar properties of conics, obtained
by the general intersection of a cone or cylinder (combined in the term rouleau, in accord-

ance with Desargues’s unifying principle, so that conics are coupes de rouleau).

Another outstanding contribution of Desargues’s is found in an appendix of three

propositions to a book published by his pupil, the master craftsman Abraham Bosse, called

Maniere universelle de M. Desargues pour pratiquer la perspective (Paris, 1648), 340-343. 4

The first contains the theorem on perspective triangles called after Desargues. The text

can be found in the Oeuvres de Desargues, I, 430-433, or in Taton’s book, pp. 206-212. The
theorem is stated in the following words

:

When the lines HDa, HEb, EDc, lag, fib, HKl, Dg, EKf[Fig. 5] either in dif-

ferent planes or in the same plane, meet in any order or direction
[
biais

] what-
soever, and in similar points, 5 then the points c, /, g lie in one line cfg. For what-
ever form the figure takes, and in all cases, the lines being in different planes,

[say] bac, lag, clb in one plane and EDc, KDg, EKf in another, then the points

c, /, g are in each of the two planes, hence they are in one straight line cfg. And
when the lines are in the same plane

H

4 The title of this book in the Oeuvres of 1864 is incorrect; see Taton, p. 67.
6 Such as Da, Eb, Kl meeting at H.
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the theorem is proved by an argument involving repeated application of the theorem of

Menelaus concerning a transversal in a triangle. Then the converse theorem is maintained,

both for different planes and for the same plane. The argument, which is not very clear, can

be studied in English translation in Smith, Source book
,
307-311, if it is understood that

Desargues’s notation

(gD - gK
cD — cE i

1 fK-fE

means^ x ~ and expresses the application of Menelaus’ theorem to transversal
cE gK fE

fcg of triangle DEK.
In a final remark Desargues observes that the figure formed by two perspective triangles

in space is transformed by oblique parallel projection on the plane of one of the triangles

into two perspective triangles of the plane. The two figures correspond "line to line, point

to point, and reasoning to reasoning . . . and the properties of the figures can be discussed

from either figure.”

7 PASCAL. THEOREM ON CONICS

Blaise Pascal (1623-1662) was the son of the mathematically gifted official Etienne Pascal,

and was introduced as a boy by his father to the circle of savants around Father Marin

Mersenne, to which Descartes and Desargues belonged. After talking to Desargues, and

probably reading his Brouillon proiect the 16-year-old Blaise published a “petit placard en

forme d’affiche” (handbill) containing his Essay pour les coniques (Paris, 1640), which

announces the “theorem of Pascal” concerning the so-called “hexagrammum mysticum.”

Like Desargues’s Brouillon, it had only a small circulation; at present only two copies are

known. Pascal uses some of the original terms of Desargues, such as ordonnance de lignes for

pencil of lines.

The text is published in Oeuvres de Pascal, ed. L. Brunschwicg and P. Boutroux (Paris,

1908), I, 243-260, with a reproduction of the “handbill”; also in R. Taton, L’Oeuvre

mathematique de G. Desargues (Presses Universitaires, Paris, 1951), 190-194. See also R.

Taton, “L’ ‘Essay pour les coniques’ de Pascal,” Revue d’Histoire des Sciences et de leurs

Applications 8 (1955), 1-18. We base our translation on that in Smith, Source book, 326-330.

ESSAY ON CONICS

First Definition. When several straight lines meet at the same point, or are

parallel to each other, all these lines are said to be of the same order or of the

same pencil
[
ordonnance], and the totality of these lines is termed an order of

lines or a pencil of lines.

Definition II. By the expression “conic section,” we mean the circumference

of the circle, the ellipse, the hyperbola, the parabola, and the rectilinear angle;
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since a cone cut parallel to its base, or through its vertex, or in the three other

directions which produce respectively an ellipse, a hyperbola, and a parabola,

produces in the conic surface, either the circumference of a circle, or an angle,

or an ellipse, a hyperbola, or a parabola.

Definition III. By the word line used alone, we mean a straight line.
1

Lemma I. If in the plane M, S, Q [Fig. 1] two straight lines MK, MV are

drawn from point M and two lines SK, S V from point S; and if K is the point

of intersection of the lines MK,SK; V the point of intersection of the lines

MV, SV; A the point of intersection of the lines MA
,
SA

;
and /a the point of

intersection of the lines MV, SK; and if through two of the four points A, K,

fj.,
V, which do not lie in the same line with points M, S, such as the points K, V,

a circle passes cutting the lines MV, MK, SV, SK at points 0, P, Q, N, then I

say that the lines MS, NO, PQ are of the same order. 2

Lemma II. If through the same line several planes are passed, and are cut by
another plane, all lines of intersection of these planes are of the same order as

the line through which these planes pass.

On the basis of these two lemmas and several easy deductions from them, we
can demonstrate that if the same things are granted as for the first lemma, that

is, through points K, V, any conic section whatever passes cutting the lines

1 “Par le mot de droite mis seul, nous entendons ligne droite.” The first definition estab-
lishes the projective equivalence of intersection and parallel lines, and is thus based on
Desargues’s concept of points at infinity. Similarly, the second definition establishes that
any plane intersection of an (oblique) cone is a conic section. Pascal, again following
Desargues, breaks with the Apollonian tradition of the “triangle par l’axe,” in which the
only sections of an (oblique) cone considered are in planes perpendicular to the triangle
formed by a plane through the “axis.”

2 Remembering that “are of the same order” means “pass through the same finite or
infinite point,” we recognize “Pascal’s theorem” for a circle. Notice that for Pascal his
theorem is only a lemma, which indeed it was; he used it to find many other properties. We
can only conjecture how Pascal proved his lemma, but it is likely that, like Desargues, for
his theorem, he used the theorem of Menelaus.
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MK, M V, SK, SV in points P, 0, N, Q, then the lines MS, NO, PQ will be of the

same order. This constitutes a third lemma. 3

By means of these three lemmas and certain deductions therefrom, we pro-

pose to give a complete text on the elements of conics, 4 that is to say, all the

properties of diameters and other straight lines, of tangents, etc., the con-

struction of the cone from substantially these data, the description of conic

sections by points, etc.

Having done this, we shall state the properties which follow, doing this in a

more general manner than usual. Take, for example, the following: If in the

plane MSQ, in the conic PKV, there are drawn the lines AK, AV, cutting the

conic in points P, K, Q, V
, and if from two of these four points that do not lie in

the same line with point A—say the points K, V—and through two points N, 0,

taken on the conic, there are produced four lines KN, KO, VN, VO, cutting the

lines AK, AV, at points L, M, T, S, then I maintain that the proportion com-

posed of the ratios of the line PM to the line MA
,
and of the line HS to the line

SQ, is the same as the proportion composed of the ratio of the line PL to the

line LA, and of the line AT to the line TQ. 5

We shall also demonstrate [Fig. 2] that if there are three lines DE, DG, DH
that are cut by the lines AP, AR at points F, G, H, C, y, B and if the point E be

fixed in the line DC, [a] the proportion composed of the ratios of the rectangle

EF .FG to the rectangle EC .Cy, and of the line Ay to the line AG, is the same
as the ratio of the rectangle EF.FH to the rectangle EC.CB

,
and of the line

AB to the line AH. 6
[6] The same is also equal to the ratio of the rectangle

FE . FD to the rectangle CE . CD. Consequently, if a conic section passes through

3 This is the extension of Pascal’s theorem to any conic, including the degenerate
case (hence “Pascal’s theorem” in modern axiomatics, the special case already known to

Pappus).
4 We know that Pascal

(Oeuvres , II, 220) worked on this treatise, and Leibniz in a letter

of 1676 reported on his study of the manuscript. After that time it disappeared.
5 This theorem is equivalent to the statement that the cross ratios (ALMP

)

and (ASTQ)
are equal.

R
EF x FG Ay EF x FH AB

L<IJ EC x Cy
X AG ~ EC x CB

X
Zff

This is Pappus’ theorem; in modern terms; the four rays of the pencil D(A, C, y, B) cut out
from two intersecting lines point ranges with equal cross ratios (the term “cross ratio” is

due to W. K. Clifford, 1869).

lb 1 This ratio
EF x FH
EC x CB x

AB . ,

is also equal to
FE x FD
CE x CD'

(footnote continued

)
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the points E, D, cutting the lines AH, AB in points P, K, R, <p, [c] the proportion

composed of the ratio of the rectangle of these lines EF, FG, to the rectangle of

the lines EC, Cy, and of the line yA to the line AG, will be the same as the ratio

of the rectangle of the lines FK, FP to the rectangle of the lines CR. Cifi, and of

the rectangle of the lines AR, Aifi to the rectangle of the lines AK, AP.
We can also show that if four lines AC, AF, EH, EL [Fig. 3] intersect in

points N, P, M, 0, and if a conic section cuts these lines in points C, B, F, D,

H, G, L, K, the proportion consisting of the ratios of rectangle MC.MB to

rectangle PF .PD, and of rectangle AD.AF to rectangle AB.AC, is the same
as the proportion composed of the ratios of rectangle ML.MK to the rectangle

PH . PG, and of rectangle EH . EG to rectangle EK .EL. 7

We can also demonstrate a property stated below, due to M. Desargues of
Lyons, one of the great minds of this time and one of the best versed in mathe-
matics, particularly in conics, whose writings on this subject, although few in

number, give abundant proof of his knowledge to those who seek for informa-
tion. I should like to say that I owe the little that I have found on this subject

to his writings, and that I have tried to imitate his method, as far as possible,

in which he has treated the subject without making use of the triangle through
the axis. 8

Giving a general treatment of conic sections, the following is the remarkable
property under discussion: If in the plane MSQ [Fig. 1] there is a conic section

This can b© reduced to Menelaus’ theorem for the triangle:

FH x AB x CE = AH x CB x DF,

also used by Desargues.

EF x FO yA _ FK x FP Ar x Ai/j
C

EC x Cy
x AG - Cr x C<p ~ AK x AP'

The last identity expresses a relation between the segments that the conic intercepts on the
sides of the triangle AFC.

1
MC x MB AD x AF ML x MK EH x EG
PF x PD X AB x AC ~ PH x PQ X EK x EL'

This formula establishes the relation between the segments a conic section cuts out on the
sides of quadrilateral MNOP.

8 See note 1

.
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PQN, on which are taken four points K, N, 0, V from which are drawn the lines

KN, KO, VN, VO, in such a way that through the same four points only two
lines may pass, and if another line cuts the conic at points R, ip, and the lines

KN
,
KO, VN , VO in points X, Y, Z, 8, then as the rectangle ZR . Zip is to the

rectangle yR.yip, so the rectangle 8R.8tp is to the rectangle XR.Xip. 9

We can also prove that if in the plane of the hyperbola, the ellipse, or the
circle AGE [Fig. 4] of which the center is C the line AB is drawn touching the

section at A, and if having drawn the diameter we take line AB such that its

square shall be equal to one-fourth of the rectangle of the figure and if CB is

drawn, then for any line such as DE, parallel to line AB and cutting the section

in E and the lines AC, CB in points D, F, the property holds that if the section

AGE is an ellipse or a circle, the sum of the squares of the lines DE, DF will be
equal to the square of the line AB, 10 and in the hyperbola, the difference be-

tween the same squares of the lines DE, DF will be equal to the square of the

line AB.
We can also deduce from this several problems; for example:

From a given point to draw a tangent to a given conic section;

To find two diameters that meet at a given angle;

To find two diameters cutting at a given angle and having a given ratio.

There are many other problems and theorems, and many deductions which
can be made from what has been stated above, but the distrust which I have
owing to my little experience and capacity, does not allow me to go further into

the subject until it has passed the examination of able men who may be willing

to take this trouble. After that if someone thinks the subject worth continuing,

we shall endeavor to extend it as far as God gives us the strength.

At Paris, M.DC.XL.

9 This is Desargues’s theorem on the involution cut out by a pencil of conics on a trans-
versal.

10 AB 2 = DE2
-f DF2

, equal to the square of the minor axis, determines the ellipse.

This equality is equivalent to the equation of the ellipse in its modern form, x2/a2 + y
2
\b

2 = 1 ,

and is related to propositions of Apollonius and Desargues. In the case of a circle, “the
fourth of the rectangle of the figure” is the square of the radius.
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The petit placard of Pascal suffered the same fate as the brouillon ” of Desargues: it

soon got lost. Huygens wrote in 1656 to P. de Carcavy that he had never seen these docu-
ments. Leibniz had a look at Pascal’s many notes, and referred in his own notes to the
Essay

, but the notes of Pascal are now lost. The first to rediscover Pascal’s theorem was
Colin Maclaurin (1727); the first to republish it, now with a demonstration, was William
Braikenridge, like Maclaurin a resident of Edinburgh, in his Exercitatio geometrica de des-

criptions linearum curvarum (London, 1733), using what we now call projective pencils. On
Maclaurin see Selection V.13.

8 NEWTON. CUBIC CURVES

Newton’s Enumeratio linearum tertii ordinis was first published together with his Opticks
in London in 1704, but it was written much earlier, perhaps in or after 1676. It represents
a definite step ahead in the development of analytic, or algebraic, geometry. Where alge-

braic curves of higher degree than two had so far been studied only in certain special forms,
such as the cissoid, or the folium of Descartes, Newton undertook the classification of all

curves of the third degree; moreover, he freely used (a novelty at the time) positive and
negative values of the coordinates. He was the first to study the character of these curves
by means of their points of intersection with a straight line. The exposition is brief, and is

hard to follow; James Stirling, as early as 1717, published a commentary. There exists an
English translation by C. R. M. Talbot, Sir Isaac Newton’s “Enumeration of lines of the

third order” (Bohn, London, 1860), from which we here reproduce some sections. Talbot
adds a very detailed commentary.

The general idea of Newton’s work can be summed up as follows. First, certain affine

properties of conics, such as asymptotes and diameters, are extended to third-order curves.
Then the curve is studied with the aid of a set of oblique coordinate axes. If we write the
equation of the curve in the form

aoV
3 + {b0 + b^jy 2 + (c0 + Cjx + c2x

2
)y + (d0 + d

x
x + d2x

2 + d3x
3

)
= 0,

then, if b0 = fq = 0, the x-axis is a “diameter,” that is, the locus of the centers of gravity
of the three points of intersection on each ordinate.

We further observe that there exists at least one (real) asymptote. If the z-axis is taken
parallel to this asymptote, then a0 = 0. The locus of the midpoints of chords parallel to this

asymptote is the hyperbola with the equation (taking b
1 =£ 0)

2y(f>0 + b xx) + c0 + cx + c,x2 = 0.

This curve has two asymptotes, which we can select as x- and y-axes. Then the equation
of the hyperbola will be of the form Axy + B = 0, so that b0 = c1 = c2 = 0, and the cubic
curve will have the equation

b xxy
2 + c0y + d0 + dxx + d2x

2 + d3 = 0,

in which we recognize Case I of Newton. There are three other cases, which Newton enumer-
ates, but he does not prove that four exhausts the number of cases. This was done by
Francis Nicole, Histoire et memoires de VAcademie de Paris (1729), 194. Further classifi-
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cation of cubic equations leads Newton to 72 species, of which the last is the cubic parabola

y = ax3 + bx2 + dx + d. The principle of classification based on the study of the roots of

equations obtained by taking one of the axes parallel to an asymptote is rather arbitrary,

and many other classifications have been given; for instance, Julius Pliicker, System der

analytischen Geometrie (Duncker, Berlin, 1835), 220-241, found 219 types.

ENUMERATION OF LINES OF THE THIRD ORDER

SECTION I. THE ORDER OF LINES

Geometrical lines 1 are best divided into orders, according to the dimensions of

the equation expressing the relation between absciss and ordinate, or, which is

the same thing, according to the number of points in which they can be cut by a
straight line. So that a line of the first order will be a straight line; those of the

second or quadratic order will be conic sections and the circle; and those of the

third or cubic order will be the cubic Parabola, the Neilian Parabola, the Cissoid

of the ancients, and others we are about to describe. A curve of the first genus
(since straight lines are not to be reckoned among curves) is the same as a line

of the second order, and a curve of the second genus is the same as a line of the

third order. 2 And a line of the infinite order is one which a straight line may cut

in an infinite number of points, such as the spiral, cycloid, quadratrix, and every
line generated by the infinitely continued rotations of a radius.

SECTION II. THE PROPERTIES OF CONIC SECTIONS ARE ANALOGOUS TO THOSE OF
CURVES OF HIGHER ORDERS

The chief properties of conic sections have been much treated of by geometers,

and the properties of curves of the second and higher genera are very similar to

them, as will be shown in the following enumeration of their principal properties:

1. Of Curves of the Second Genus, Their Ordinates
,
Diameters, Vertices, Centres,

and Axes. If parallel straight lines terminated by the curve be drawn in a conic

section, the straight line bisecting two of them will bisect all the others, and is

called a diameter, and the bisected lines are called ordinates to the diameter,

and the intersection of all the diameters is the centre; the intersection of the

diameter with the curve is called the vertex; that diameter, whose ordinates are

rectangular to it, being called the axis. In like manner, in curves of the second
genus, if any two parallel straight lines are drawn, meeting the curve in three

points; the straight line which cuts these parallel lines so that the sum of the
two segments meeting the curve on one side of the secant, will cut in the same
ratio all lines parallel to these, provided they also meet the curve in three

1 Descartes, in his Geometrie, Book II, calls curves that can be expressed by a single
equation (which in his case is always an algebraic equation), “courbes geometriques ”

; see
D. E. Smith and M. L. Latham, trans., The Geometry of Rene Descartes (Open Court, Chicago,
London, 1925; Dover, New York, 1954), 48.

2 This division of geometrical curves into curves of genus [genre] 1 (conic sections), genus 2
(third- and fourth-degree curves), genus 3 (curves of degree 5 and 6) can also be found in
Descartes, on the same page as referred to in note 2; see Selection III. 4, note 1.
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points; that is, so that the sum of the two parts on one side of the secant, shall

equal the third part on the other side. These three parts, thus equal, may be

called ordinates, and the secant or cutting line to which the ordinates are

applied, the diameter; the intersection of diameter and curve, the vertex; and
the intersection of two diameters, the centre. The diameter having rectangular

ordinates, if any exist, may also be called an axis; and where all the diameters

meet in a point, that point will be the general centre.

2. Of Asymptotes and Their Properties. A hyperbola of the first genus will

have two asymptotes; that of the second genus will have three; of the third,

four, and no more; and so on for the rest. And as the segments of any straight

line intercepted between the conic hyperbola and its asymptotes on each side

are equal, so in hyperbolas of the curve and its three asymptotes in three points,

the sum of those two segments of the secant, which are drawn from any two
asymptotes on the same side to two points of the curve, will be equal to the

third part, which is drawn from the third asymptote on the contrary side, to the

third point in the curve. 3

3. Of Latera Recta and Transversa. And in like manner, as in the nonparabolic

conic sections, the square of the ordinate—i.e., the rectangle contained by the

ordinates on each side of the diameter 4—is to the rectangle of the segments of

the diameter of the ellipse and hyperbola, terminated at the vertices; as a

certain given line called the latus rectum, to the part of the diameter which lies

between the vertices, and is called the latus transversum; so in nonparabolic

curves of the second genus, the product of three ordinates, is to the product of

the abscisses of the diameter between the ordinates and the three vertices of the

curve, in a given ratio; in which ratio, if three lines are taken to three segments

of the diameter between the vertices of the curve, each to each, then these three

lines may be considered as the latera recta of the curve, and the three segments

of the diameter between the vertices as its latera transversa. And as in the conic

parabola, which has but one vertex to a diameter, the rectangle under the

ordinates, is equal to the rectangle under the absciss between the vertex and
ordinates, and a given straight line called the latus rectum : so in curves of the

second genus, which have only two vertices to the same diameter, the product

of the three ordinates is equal to the product of the two parts of the diameter

cut off between the ordinates and the two vertices, and a certain given straight

line, which may be called the latus rectum. 5

Paragraph 4 deals with the ratio of the products of the segments of parallel lines.

5. Of Hyperbolic and Parabolic Branches, and Their Directions. All infinite

branches of curves of the second and higher genus, like those of the first, are

3 This can be proved with the aid of a diameter. For a full explanation see Talbot,
Newton’s “ Enumeration,” p. 37.

4 It will be remembered that “the rectangle contained by two lines x and y" means the
product xy.

B See Talbot, Newton’s “ Enumeration,” pp. 38-40 for full documentation.
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either of the hyperbolic or parabolic sort. I define a hyperbolic branch as one
which constantly approaches some asymptote, a parabolic branch to be that

which, although infinite, has no asymptote. These branches are easily dis-

tinguished by their tangents; for supposing the point of contact to be infinitely

distant, the tangent of the hyperbolic branch will coincide with the asymptote,
but the tangent of the parabolic branch being at an infinite distance, vanishes,

and is not to be found. The asymptote to any branch is, therefore, found by
seeking for the tangent to a point in that branch at an infinite distance. The
direction of the branch may be found, by determining the position of a straight

line parallel to the tangent referred to a point in the curve infinitely distant; for

such straight line will have the same direction as the infinite branch itself.

SECTION m. THE REDUCTION OF ALL CURVES OF THE SECOND GENUS TO FOUR
CASES OF EQUATIONS

All lines of the first, third, fifth, seventh, or odd orders, have at least two in-

finite branches extending in opposite directions; and all lines of the third order

have two branches of the same kind, proceeding in opposite directions, towards
which no other of their infinite branches proceed (except only the Cartesian

parabola).

Case I (Fig. 1). If the branches be hyperbolic, let GAS be their asymptote, and
let CBc be any line drawn parallel to it, meeting the curve on each side (if

Fig. 1

possible); let this line be bisected in X, which will be the locus of a hyperbola,

say X<f>, one of whose asymptotes is AG. Let its other asymptote be AB, and the

equation definining the relation between absciss AB and ordinate BC, ifAB = x,

BC = y, will always be of the form

xy2 + ey = ax3 + bx2 + cx + d,
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where the terms b, c, d, a, e, designate given quantities, affected by their proper

signs + or —
,
of which any may be deficient, so that the figure, by reason of their

absence, be not changed to a conic section. It may be, however, that this conic

hyperbola coincides with its asymptotes; that is, the point X may fall in the

straight line ..415; and in that case the term + ey is deficient .

Case II (Fig. 2). But if the straight line CBc is not bounded by the curve at

each end, but only meets the curve in one point, draw AB any straight line

given in position, meeting the asymptote .4 (S' in A. and draw another line BC
parallel to that asymptote, and meeting the curve in C; then the equation

expressing the relation of the ordinate BC and absciss AB always assumes the

form

xy = ax3 + bx2 + cx + d.

Case III (Fig. 3). But if the opposite branches are of the parabolic sort, let the

straight line CBc be drawn, if possible, meeting each branch of the curve, and
being bisected in B, the locus of B will be a straight line. Let this straight line
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be AB, terminating at any point A, then the equation expressing the relation of

ordinate BC and absciss AB always assumes the form

y
2 = ax3 + bx2 + cx + d.

Case IV (Fig. 4). But when CBc only meets the curve in one point, and, there-

fore, cannot be bounded at both ends, let that one point be C; and at the point

B let CBc meet another straight line given in position, AB, and terminating at

any point A, then the equation expressing the relation between ordinate BC
and absciss AB always assumes the form

y = ax3 + bx2 + cx + d.

The Names of the Curves. In the enumeration of these cases of curves, we shall

call that which is included within the angle of the asymptotes in like manner as

the hyperbola of the cone, the inscribed hyperbola; that which cuts the asymp-
totes, and includes within its branches the parts of the asymptotes so cut off,

the circumscribed hyperbola; that which, as to one branch, is inscribed, and, as

to the other, circumscribed, we shall call the ambigenous hyperbola; that which
has branches concave to each other and proceeding towards the same direction,

the converging hyperbola; that which has branches convex to each other, and
proceeding towards contrary directions, the diverging hyperbola; that which
has branches convex to contrary parts and infinite towards contrary sides, the
contrary branched hyperbola; that which, with reference to its asymptote, is

concave at the vertex, and has diverging branches, the conchoidal hyperbola;
that which cuts the asymptote in contrary flexures, having on both sides con-

trary branches, the serpentine hyperbola; that which intersects its conjugate,

the cruciform hyperbola; that which intersects and returns in a loop upon itself,

the nodate hyperbola; that which has two branches meeting at an angle of con-

tact, and there stopping, the cusped hyperbola; that which has an infinitely

small conjugate oval, i.e., a conjugate point, the punctate hyperbola
;
that which,

from the impossibility of two roots, has neither oval, node, cusp, nor conjugate
point, the pure hyperbola.

In the same way we shall speak of parabolas, as converging, diverging, contrary

branched, cruciform, nodate, cusped, punctate, and pure.
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In the case of the first-mentioned equation, if ax3
is positive (Fig. 5), the

figure will be a triple hyperbola with six hyperbolic branches progressing to

infinity alongside of three asymptotes, no one of which is parallel to another,

two alongside of each hyperbola, on contrary sides. And these asymptotes, if

the term bx2
is not deficient, will cut one another at three points, making a

triangle (DdS); but if the term bx2
is deficient, all the points will converge to one

Fig. 6
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point. In the former case, take AD = —6/2a and Ad = ^48 = b/2Va, join

Dd, D 8; and Ad, Dd, D8 will be the three asymptotes. In the latter case (Fig. 6)

draw any ordinate BC parallel to the principal ordinate AG, and in it produced

in each direction take BF, Bf, equal to each other, and in the ratio to AB of

V

a

: 1
,
join AF, Af; and AG, AF, Af will be the three asymptotes. This hyper-

bola we call redundant, because it exceeds the conic hyperbola in the number of

its hyperbolic branches.

Then follows a paragraph on diameters.

SECTION IV. THE ENUMERATION OF CURVES. OF THE NINE REDUNDANT HYPER-

BOLAS, HAVING NO DIAMETER, AND THREE ASYMPTOTES, MAKING A TRIANGLE

When a redundant hyperbola has no diameter (Fig. 5), let the four roots be

found of the equation ax4 + bx3 + cx2 + dx + e
2
/4 = 0. Erect the ordinates

PT
,
cot, ttI, pt which are tangent to the curve at the points T, t, l, t, and by

touching give the limits of the curve by which this species is determined. In-

deed, if all the roots AP, Adi, An, AP (Figs. 5, 7), are real and unequal, and of

the same sign, the curve consists of three hyperbolas (inscribed, circumscribed,

and ambigenous), and of an oval. One hyperbola lies towards D, another towards

d, and the third towards 8; and the oval always lies within the triangle Dd8

within the limits rl, in which it is touched by the ordinates ul and cot.

This is the 1st species.
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If the two greatest roots An, AP (Fig. 8), or the two least AP, Ad, (Fig. 9),
equal to each other, and all of the same sign, the oval and circumscribed hyper-
bola will coalesce, their points of contact l and f, or T and r, coming together,
and the branches of the hyperbola, intersecting one another, run on into the
oval, making the figure nodate.

This is the 2d species.
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If the three greatest roots AP, An, Aa> (Fig. 10), or the three least roots *4 77,

Aw, AP (Fig. 11), are equal to each other, the node becomes a sharp cusp;

because the two branches of the circumscribed hyperbola meet at an angle of

contact, and extend no farther.

This is the 3d species.
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The total number of species is 72. The last six are

{a) The five divergent parabolas y
2 = ax3 + bx2 + ca + d, classified according to the

roots of ax3 + bx2 + ax + d = 0, and
(b) The cubic parabola y = ax3 + bx2 + cx + d (species 72).

SECTION V. THE GENERATION OF CURVES BY SHADOWS 7

If the shadows of curves caused by a luminous point, be projected on an infinite
plane, the shadows of conic sections will always be conic sections; those of
curves of the second genus will always be curves of the second genus; those of the
third genus will always be curves of the third genus; and so on ad infinitum.
And in the same manner as the circle, projecting its shadow, generates all the

conic sections, so the five divergent parabolas, by their shadows, generate all
other curves of the second genus. And thus some of the more simple curves of
other genera might be found, which would form all curves of the same genus by
the projection of their shadows on a plane.

There follow a paragraph on double points, Section VI on “The organic description of
curves,” and Section VII on “The construction of equations by the description of curves.”

9 AGNESI. THE VERSIERA

Maria Gaetana Agnesi (1718-1799) of Milan, sister of the composer Maria Teresa Agnesi,
occupied for a time (with the consent of the pope) a chair at the university of Bologna until
she retired to devote herself to religious work. Her Instituzioni analitiche (Milan, 1748;
French translation, Paris, 1775; English translation, London, 1801), in two beautiful
volumes, was the first comprehensive textbook on the calculus after L’Hopital’s early book.
This book, as well as the Traite du calcul integral (2 vols.; Paris, 1754, 1756) by Louis
Antoine de Bougainville, the later explorer, was soon superseded by Euler’s great texts on
the calculus (1755-1770). Among the many curves discussed by Agnesi we find the versiera,
xy = a2

(a - *). The word is derived from Latin vertere, to turn, but is also an abbreviation
of Italian avversiera, female devil. Some wit in England once translated it “witch,” and
the silly pun is still lovingly preserved in most of our textbooks in the English language.
We have taken Agnesi’s introduction of the versiera as one of our selections to honor the

first important woman mathematician since Hypatia (fifth century a.d.). The curve had
already appeared in the writings of Fermat (Oeuvres, I, 279-280; III, 233-234) and of

7 This short paragraph on the genesis curvarum per umbras contains Newton’s theorem
that every curve of the third order can be obtained from a divergent parabola by central
P
f'

“Je®*jon
l

fr“n
.

one Plane on another. For this theorem see also the twenty-second lemma
ot .Newton s Pnncipia and its first book, Props. 25, 26.



AGNESI. THE VERSIERA 9
|

179

others; the name versiera is from Guido Grandi. 1 We translate the text of Book I, pp.

380-382, where it appears as Problem III of a set which in Problem I introduces the cissoid,

in Problem II the curve y
2(2ax — x2

)
= ax — x2

,
and in Problem IV the conchoid. Cissoid

and conchoid are curves known from antiquity.

Problem III. Given the semicircle ADC with AC as diameter [Fig. 1], to find

outside of it the point M such that MB, the line orthogonal to the diameter AC,

intersecting the circle in D, makes the ratio AB : BD equal to that of AC : BM,
and as an infinite number of such points M can be found, satisfying that con-

dition, we inquire after their locus.

Let M be one of these points, and let -46' = a, AB x, BM = y, then,

because of the properties of the circle BD = V ax — xx, and because of the

above condition, we shall have AB.BD = AG\BM\ i.e.
,
x\Vax — xx = a:y;

aVax — xx
or yand therefore y = is the equation of the required

x ~ v x

curve, which is called the Versiera.

Since AB = x, BM = y, AC is the z-axis and AQ, parallel to BM, is the axis

of the ordinate y. If we set first x = 0, then y = oo, and therefore AQ is the

asymptote of the curve. If y = 0, then aVa — x = 0, hence x = a; when

therefore x = a, the curve will touch the axis -46', and will pass through the

point C, which is its vertex, if x = hi. then y = a; when x = AP = fa, then

y = aVj; when x = A F = fa, then y = aV|. Suppose x is greater than a,

then the expression under the radical sign becomes negative, and the curve

imaginary. In order to see if the curve is concave or convex to the axis AC, we

form the proportion: As CP = \a (which corresponds to x = fa) is to y — aV'J,

so is CF = \a (which corresponds to x = fa) to the fourth, which will be

faVf ;
but x = %a gives us y = aV|, and faV\ is smaller than aVJ ;

therefore

the curve will be concave to the AC axis; 2 but toward the asymptote AQ it must

also be convex, so it will be partly concave and partly convex and therefore will

1 G. Grandi, Quadratura circuli et hyperbolae (Pisa, 1703). The curve is type 63 in Newton’s

classification (Selection III. 8). The first to use the term “witch” in this sense may have been

B. Williamson, Integral calculus
, 7 (1875), 173; see Oxford English Dictionary.

2 This reasoning is not very convincing, but Agnesi promises to find the point of inflection

later; see the next footnote.
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have a point of inflection
[flesso contrario], which can be found by a method to be

given in due time. Since, if we take x negative, the term under the radical sign
in the denominator becomes negative, y must be imaginary and the curve will
have the shape shown in the figure, which indicates that it has a branch similar
and equal to the branch CLM in the part of negative y.

4

10 CRAMER AND EULER. CRAMER’S PARADOX
Gabriel Cramer (1704-1752) was a Swiss mathematician who gave lessons at Geneva. He
was the editor of Jakob Bernoulli’s Opera (Geneva, 1744) and Johann Bernoulli’s Opera
omnia. (Geneva, 1742), and the author of the Introduction d I’analyse des lignes courbes
algebriques (Geneva, 1750), a large volume containing the most complete exposition of
algebraic curves existing at that time, going far beyond Newton’s Enumeratio. It discusses
many properties of asymptotes and the singularities of algebraic curves, deals with special
curves, and also contains “Cramer’s paradox,” which follows here. In an appendix Cramer
gives the general rule for the solution of n linear equations with n unknowns (in his case
n = 3), which can be regarded as a contribution to the theory of determinants, although
Cramer has no special notation; he only describes the composition of the numerator and the
denominator of the solution. “Cramer’s paradox” states that an algebraic curve Cn of
degree n is not always uniquely determined by Jn(n + 3) points—\n(n + 3) being "the
number of the coefficients of its general equation minus 1—since for n > 2 this number is

not larger than the number n 2 of the intersections of the Cn with another Cn . For instance,
a C3 is not always uniquely determined by 9 points. The “paradox” had already appeared
in Colin Maclaurin’s Geometria organica (London, 1720), and in Euler (see below). The
general rule for the solution of n linear equations with n unknowns was already known to
Leibniz (and to the Japanese mathematician Seki Kdwa, or Seki Takakusu, 1603).
In Chapter III Cramer argues that an equation of order v has in general

£vv + >• co-
efficients (one of which can always be made 1); he then reasons as follows:

38. From this it follows that it is possible, in general [regulierement], to pass a
curve of order v through \vv + f» given points, or that a curve of order v is

determined, and its equation given, when \vv + \v points are given through
which it must pass.

A line of the first order is thus determined by two given points, a curve of the
second order by 5, one of the third by 9, one of the fourth by 14, one of the fifth
by 20, etc.

3 On p. 561, Book II, Agnesi finds by taking ddy = 0 that the point x = \a, y = aVi
is a point of inflection. The supposition ddy = 0 gives only x = 0 and x = a. There is no
attempt to test whether higher derivatives are zero or different from zero. (On this see
Selection V.13, Maclaurin).

4 On pp. 392-393, Book I, Agnesi proves that we also obtain the versiera when we draw
an arbitrary line BDM parallel to CE, draw ADE, and draw EM parallel to CA; then M is
a

i oni
nt

r,°L
th6 versiera - 0n the versiera see further G. Loria, Bibliotheca mathematica 11

(1897), 7 12; (ser. 3) 3 (1902), 127-130; G. Enestrom, ibid. 12 (1911-1912), 175-176.
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Then follows an example to prove this statement by means of five points through which a

conic has to pass. This leads to five linear equations for the five coefficients of A + By +
Cx + Dyy + Exy + xx = 0. To solve these equations Cramer says, in a footnote, that he

believes he has “found a rather easy and general rule, when there are an arbitrary number

of equations and of unknowns of which none occurs to a degree higher than the first. It can

be found in Appendix 1.” He carries out his computation by selecting the coordinate system

in a convenient way. Then follows the study of the points of intersection of a curve with a

straight line, and of two curves, with examples. This leads up to Art. 46:

46. It has been demonstrated 1 that if there are two variables and two un-

determined equations expressing the relation between these variables with

constants, one of them of order m and the other of order n, then if, with the aid

of these two equations, one eliminates one of these variables, the remaining

equation, in its ultimate form, has at most mn dimensions. In this equation

there can therefore be only mn roots at most. Hence, two algebraic curves

described in the same place can meet each other at most in as many points as

there are unities in the product of the numbers which are the exponents of their

order. 2 For instance, a curve of the third order can meet a curve of the fourth

order in at most 12 points, and a curve of the 5th order can only meet a curve of

the 12th order in at most 60 points.

47. This principle seems at first to be in contradiction to that of art. 38. It is

always possible to describe a curve of the second order through five points,

whatever be the position of these five points. If three of them are on a straight

line, then this line will cut in three points the curve of the second order that

passes through the five given points. But we have seen (art. 39 or the prec.) that

a line can intersect a curve of the second order in only two points. How to recon-

cile these two opposite consequences ? There is only one way. That is to say that,

in this case, the curve of the second order that passes through the five given

points is not a curve, but the system of two lines of which one is the same that

passes through the three points that were given as lying in a straight line, and

the other passes through the two remaining points. Computation will confirm

the truth of this reconciliation.

Here follows an example in coordinates and a general conclusion, quoting Maclaurin,

Geometria organica, p. 137. 3

1 [Footnote by Cramer] This principle, a purely algebraic one, can be demonstrated in

Algebra. As I know of nobody who has given the demonstration, I have found it necessary to

present one in Appendix 2.

2 [Footnote by Cramer] Mr. Maclaurin has demonstrated the same thing, but I do not

believe that his demonstration has been published. See Philos. Trans. 39, p. 143 (1732).
3 On this book see C. Tweedie, “The ‘Geometria organica’ of Colin Maclaurin,” Proceed-

ings of the Royal Society, Edinburgh, 36 (1915-16), 87-150, with a paraphrase of the contents.

The “paradox ” is §64, Corollary 2 of Section V. See also C. Tweedie, “A study of the life and
writings of Colin Maclaurin,” Mathematical Gazette 8 (1915-16), 132-151; 9 (1919), 303-305.
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If, in the number \vv + %v of points through which one can and wants to pass
a curve of order v, there are more than tv of these points that are on a curve of
order t inferior to v, then the required curve of order v is not a unique curve, but
the system of two or more curves, one of which is this same curve of order t on
which there are tv given points. For otherwise two curves, one of order t, the
other of order v, would intersect in more than tv points, which is impossible
(art. 48).

48. Another contradiction between art. 46 and art. 38 is the following. Since
a curve of order m can meet a curve of order n in only win points, a curve of
order v will meet a curve of the same order in only vv points. If therefore vv is

equal to or larger than the number \vv + fv—which is that of the points that
determine a curve of order v—then it is possible to pass more than one curve of
order v through \vv + \v points, which seems contrary to art. 38. Thus two
curves of the third order can intersect each other in 9 points, if one takes these
points so as to let a curve of third order pass through them; then it is clear that
the two curves intersecting in these 9 points equally satisfy the requirement.
The equation of the curve passing through these 9 points is therefore not deter-
mined. In the same way two curves of the fourth order can intersect one another
in 16 points. And we have established (art. 38) that 14 points are taken among
the 16 in which these two curves intersect one another, each curve satisfies the
problem, which therefore is undetermined.

This contradiction is resolved by the remark at the end of art. 38: if we have
as many equations as we need—speaking generally—to determine all the co-
efficients of the equation which is taken to represent the curve that has to pass
through a certain number of given points, then it may yet happen that these
coefficients remain undetermined. Then the assumed equation remains undeter-
mined and represents an infinity of curves of the same order. From which it

follows that if the 9 points through which we wish to pass a curve of the third
order are such that two curves of this order can pass through them, then it will

be possible to pass through these same 9 points an infinity of curves of the third
order . . . This is a real paradox \Ce qui est un veritable paradoxe ]

.

Euler, at about the same time, had taken up the same problem that puzzled Cramer in
his paper Sur une contradiction apparente dans la doctrine des lignes courbes,” Memoires
de VAcademie des Sciences de Berlin (1748; publ. 1750), 219-233; Opera omnia, ser. I, vol. 26,
33-45. Euler discusses the same contradictions, giving some examples of Ic systems of k
equations that do not uniquely determine their roots. The example in the case of a cubic
curve is the following.

I shall consider only one case, that in which the nine points are placed in a
square

a b c

d e f
9 h i
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and the axis is drawn through the points d, e, f, the point e being the origin of

the abscissas. Denoting the interval between two points by a, we have for the

abscissa x = 0 three values of the ordinate [appliquee] y, which are 0, + a, — a

,

and the same three values correspond also to the abscissa x = a and x = —a.

To these values corresponds the equation

my(yy — = nx(xx — aa),

where the ratio of the coefficients m and n may be anything, so that there exists

an infinity of curves of the third order all passing through the given points.

It is true that this equation also contains straight lines and conic sections,

since for n — 0 there will be three straight lines ac, df, and gi; if m = 0 there

will be three straight lines ag, bh, and ci; ifm = n there will be a straight line aei

and an ellipse passing through the points b, c, /, d, g, h, and if m = —n the

curve of the third order will be composed of a straight line ceg and an ellipse

passing through the points a, b, d, f, h, i. But for all other ratios that one can

impose on m and n there will always be a true curve of the third degree.

Euler mentions the theorem that a curve of degree m and one of degree n can intersect,

in general, in mn points, in the sense that the number of intersections cannot be greater

than mn. He gives a proof in the paper directly following the paper on the “contradiction,”

pp. 234-248; Opera omnia, ser. I, vol. 26, 46-59). He had already discussed this question in

pp. 474-482 of his Introductio in analysin infinitorum of 1748; the opening paragraphs of the

two articles are almost identical. In the paper of 1748 Euler introduces his elimination

method based on the formation of the products of the differences of the roots of the two
equations of degree m and n; see W. S. Burnside and A. W. Panton, The theory of equations

(Hodges, Dublin, 1892), 348.

Cramer and Euler had corresponded on the “paradox” in letters of 1744 and 1745 (
Opera

omnia, ser. I, vol. 26, XI-XII). At that time Cramer did not fully understand the nature

of the problem, but Euler explained it to him.

11 EULER. THE BRIDGES OF KONIGSBERG

Leibniz, in a letter to Christiaan Huygens of September 8, 1679, expressed the need he felt

for a type of calculation different from the ordinary algebra (see Selection 11.14). Here he

mentioned a possible analysis situs, or geometria situs.

Huygens was skeptical, and Leibniz did not pursue this aspect of his philosophy very far.

Nothing was published on this geometria situs until Euler, in 1736, used Leibniz’ term to

denote a topological problem, namely the “Konigsberg bridge problem.” This has little

to do with Leibniz’ mathematics of situs, and it is possible that Euler had only heard of

Leibniz’ use of the term through an oral tradition, perhaps through one of the Bernoullis.

Whatever may have happened, Euler’s interpretation of the term geometria situs, or, as we
also say, analysis situs, has won out. It is a field that started (before Euler) as a set of dis-

connected theorems, puzzles, and brain teasers, until during the nineteenth century a more
systematic approach emerged. Now we see it as a branch of topology.
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Euler’s problem of the seven bridges of Konigsberg 1 was published in the Commentarii
Academiae Scientiarum Petropolitanae 8 (1736), 128-140, and can be found in the Opera
omnia, ser. I, vol. 17, 1-10. We translate the first 13 sections, after which Euler continues
with other combinations of bridges.

A German translation of the whole paper appears in A. Speiser, Klassische Stiicke der
Mathematik (Zurich and Leipzig, 1925), 127-138, and a French paraphrase in E. Lucas,
Recreations mathemntiques (2nd ed.; Paris, 1891), 21-38.

THE SOLUTION OF A PROBLEM BELONGING TO THE OEOMETRIA
SITUS

1 . Besides that part of geometry which treats of quantities and has been studied
eagerly at all times, there is another, so far almost unknown, first mentioned by
Leibniz, which he named Geometria situs. This part concerns itself with that
which can be determined by position [situs] alone, and with the analysis of the
properties of position; here quantities will be ignored and the calculus of
quantities not used. But what kind of problems belong to this geometry, and
what method has to be utilized for their solution, is not yet certain enough.
Thus, when recently a problem was mentioned, seemingly belonging to geom-
etry

,
but such that it did not call for the determination of a quantity, now ad-

mitted of a solution by the calculus of quantities, I did not hesitate to refer it to
the Geometria situs, especially since in its solution position only came into
consideration, whereas calculus was of no use. Hence I shall set forth the method
that I discovered for the solution of such problems, to serve here as a sample of
Geometria situs.

2. The problem, supposedly quite well known, was as follows: At Konigsberg
in Prussia there is an island A

,
called

‘

' der Kneiphof, ’
’ and the river surrounding

it is divided into two branches as can be seen in Fig. 1. Over the branches of this
river lead seven bridges, a, b, c, d, e, /, and g. Now the question is whether one
can plan a walk so as to cross each bridge once and not more than once. I was
told that some deny this possibility, others are doubtful, but that nobody
affirms it. Wherefrom I formulated the following problem, framed in a very

1 Former seaport of East Prussia, on the Pregel, now Kaliningrad.
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general way for myself: Whatever the shape of the river and its division into

branches may be, and whatever the number of bridges, to find out whether it is

possible or not to cross each bridge exactly once.

3. As concerns the Konigsberg problem of the seven bridges, it could be solved

by a complete enumeration of all walks possible; then we would know if one of

them fulfills the condition or none. This method, however, is, because of the

great number of combinations, too difficult and cumbersome. Moreover, it could

not be applied to other questions where still more bridges exist. If the investiga-

tion were to be conducted in this way, then there would be found much that was
not called for at all; that is the reason, no doubt, why this way would be so

arduous. That is why I dropped this method and looked for another, leading

only so far that it shows whether such a walk can be found or not; for I suspected

that such a method would be much simpler.

4. My whole method is based on the proper designation of the bridges, using

the capitals A, B, C, D to indicate the single regions separated from each other

by the river. If one thus reaches region B from region A, crossing bridge a or b,

then I denote this transition by the letters AB, where the first gives the region

from which the traveler comes, whereas the second gives the region where he
arrives after crossing the bridge. If the traveler then goes from the region B over

the bridge /into the region D, this transition is denoted by the letters BD. These
two transitions AB and BD, carried out in succession, I denote by ABD only,

because the middle one B indicates the region into which the first transition

leads, as well as the region out of which the second transition leads.

5. In the same way, if the traveler goes from the region D over the bridge g
to the region C, I denote these three successive transitions by the four letters

ABDC. For these four letters ABDC indicate that the traveler, finding himself

initially in the region A, has passed into the region B, whence he proceeded into

region D, and finally from there arrived at C; but as these regions are separated

from each other by rivers, the traveler must necessarily cross three bridges. A
crossing of four bridges is thus indicated by five letters, and then the traveler

crosses an arbitrary number of bridges, then his path will be denoted by a

number of letters greater by one than the number of bridges. The crossing of

seven bridges requires therefore eight letters for its description.

6. By this method of description I do not pay any attention to what bridges

are crossed, that is, when the transition from one region to another can be

accomplished on different bridges, then it is irrelevant which one is used, as long

as it leads to the region indicated. If therefore the path over the seven bridges

could be planned so that it crosses each once and only once, then it could be
represented by eight letters, where these letters would have to succeed one
another in such a way that the immediate succession of the letters A and B
appears twice; since there are two bridges a and b connecting the regions A
and B; for the same reason the succession of letters A and C should also appear
twice in this series of eight letters; moreoever, the succession AD as well as BD
and CD must each appear once.

7. Our question is now reduced to another, namely, whether from the four

letters A, B, C, and D a series of eight letters can be formed in which all these

successions appear as often as is prescribed. However, before one sets out to find
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such an arrangement one should better attempt to show whether such a one
exists or not. For if one could show that no such arrangement is at all possible,

then all the effort to find it will be useless. That is why I invented a rule, which
permits one to decide in this and all similar questions without difficulty whether
such an arrangement of letters is possible.

8. To find such a rule, I observe a single region A, to which an arbitrary
number of bridges a, b, c, d, etc. lead. Of those bridges I first pay attention
only to a. When the traveler crosses this bridge, he must either have been in A
before he crossed or arrive at A after the crossing; according to our method of
notation the letter A will appear twice, no matter where the path started, in A
or not. And if five bridges lead to A, then in our notation crossing them all will

make the letter A appear three times. And when the number of bridges is an
arbitrary odd number then, by increasing the number by one and dividing by
two, we obtain the number of times the letter A must appear.

9. Hence, in the case of the Konigsberg bridges (Fig. 1) we have five bridges
leading to the island A, namely a, b, c, d, e. The letter A must therefore appear
three times in the symbol of the path. As three bridges lead to B, B must appear
twice, and the same way D and C will occur twice. In the series of eight letters,

which indicates the crossing of the seven bridges, A must appear three times but
B, C, and I) each twice; and this is in no way possible in a series of eight letters.

This shows that the desired crossing of the seven Konigsberg bridges cannot be
carried out.

10. In a similar way one can always decide whether a path exists that leads
over each bridge just once, if only the number of bridges leading to each region
is odd. For such a path always exists when the number of bridges, increased by
one, equals the sum of all numbers indicating how often each letter must
appear. In case this sum, as in our example, is greater than the number of
bridges increased by one, then such a path can in no way be laid out. The rule
I gave, to determine from the number of bridges leading to A how often in the
symbol of the path the letter A appears, is independent of whether all bridges,
as in Fig. 2, come from a single region B or from different regions; for I consider
only the region A and inquire how often the letter A must appear.

A

Fig. 2

11.

If, however, the number of bridges leading to A is even, then one must
distinguish whether or not the walk started in A. For if two bridges lead to A,
and the walk starts in A, then the letter A must appear twice, once to indicate
the leaving of A over one bridge, and a second time to indicate the return to A
over the other bridge. But if the traveler starts his path in another region, then
the letter A occurs only once, for in my notation the one appearance ofA means
entrance into A as well as exit out ofA

.
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12. Let now four bridges lead into the region A, and the path begin in A.

Then in the symbol of the completed path the letter A must appear three times,

if he crosses each bridge only once. But if the path were to start in another

region, then A would appear only twice. If six bridges lead into A, then A
appears four times, if A is the initial region, otherwise only three times. And in

general: if the number of bridges is even, then | of it indicates how often A must

make its appearance, if A is not the initial region; then one-half increased by
one indicates how often A must appear if the walk starts in A.

13. As any walk has to start in some region, I define in the following way from

the number of bridges leading to a region the number indicating how often the

corresponding letter appears in the path symbol: If the number of bridges is odd,

then I increase it by one and take half; if, however, it is even, then I take its

half. If the sum of the numbers thus obtained is equal to the number of bridges

increased by one, then we shall succeed in finding a path, but one must start in

a region to which an odd number of bridges leads. If this sum happens to be

smaller by one than the number of bridges increased by one, then the walk

succeeds if one starts in a region to which an even number of bridges leads, for

in this case our sum must still be increased by one.

Euler continues with a generalization to more regions A, B, C, . . . and more bridges, and
also deals with the question how, after it has been decided that a solution exists, the actual

method of crossing the bridges can be found. Anyone who wishes to study these questions

may read chap. IX of W. W. Rouse Ball, Mathematical recreations and essays, revised by
H. S. M. Coxeter (Macmillan, New York, 1947).



CHAPTER IV ANALYSIS BEFORE NEWTON AND LEIBNIZ

During the Middle Ages mathematical meditation on the infinitely great and infinitesimally

small usually took the form of speculation on ideas of Aristotle and Plato concerning the
relation of point to line, the nature of the incommensurable, the paradoxes of Zeno, the
existence of the indivisible, the potentially and the actually infinite. Occasionally an
infinite series, or a simple "integration,” appears. A good account of these speculations can
be found in C. B. Boyer, The history of the calculus and its conceptual development (Dover,
New York, 1959), chap. 3, which includes also direct quotations. On the study of Archi-
medes in the Middle Ages see M. Clagett, Archimedes in the Middle Ages (University of

Wisconsin Press, Madison, 1964).

The mathematical technique of dealing with infinite processes improved greatly, when
the study of Archimedes became possible on a more extensive scale. His writings first

became generally accessible through the editio princeps of 1544 (Basel), which contained the
original Greek text with a Latin translation, together with the important commentaries of
Eutocius. Other, sometimes limited, editions appeared before and afterward. One of the
first applications of Archimedean ideas can be found in Federigo Commandino’s Liber de
centro gravitatis solidorum (Bologna, 1565). He was followed by Stevin, Kepler, Valerio,

Galileo, and later authors. Although inspired by Archimedes, these men developed their

own methods of integration (differentiation came somewhat later; see Selection IV.9) and,
as a rule, rejected the mathematical rigor of the Archimedean proof, which was based on a
reductio ad absurdum. This indirect method of Archimedes (and of Euclid and other Greek
authors) became known, during the seventeenth century, as the method of exhaustion, on
which see, for instance, T. L. Heath, Manual of Greek mathematics (Clarendon Press, Oxford,

1931), 293-297. The Renaissance mathematicians were primarily out for new results, and
often were not particularly worried about possible logical loopholes in their methods. They
knew that their results were correct, and also knew that, if challenged, these results could be
proved rigorously by Archimedean methods, that is, by showing that any supposition that
the result was not true, would lead to an absurdity. But all this time-consuming indirect

reasoning bored most of these authors. Wrote Johann Kepler in the preface to his Nova
stereometria doliorum (Opera omnia, ed. C. Frisch (8 vols.; Meyder and Zinner, Frankfurt,
Erlangen, 1858-1871), IV, 556; see Selection IV. 2): “We could obtain absolute and in all

respects perfect demonstrations from these books of Archimedes themselves, were we not
repelled by the thorny reading thereof.”

Later Christiaan Huygens (1629-1695), who had a keen sense of rigor, expressed this

188



STEVIN. CENTERS OF GRAVITY 1
|

189

attitude in the following terms (Oeuvres completes, XIV, 307): “In order to achieve the

confidence of the experts it is not of great interest whether we give an absolute demonstra-

tion or such a foundation of it that after having seen it they do not doubt that a perfect

demonstration can be given. I am willing to concede that it should appear in a clear, elegant,

and ingenious form, as in all works of Archimedes. But the first and most important thing

is the mode of discovery itself, which men of learning delight in knowing. Hence it seems

that we must above all follow that method by which this can be understood and presented

most concisely and clearly. We then save ourselves the labor of writing, and others that of

reading—those others who have no time to take notice of the enormous quantity of geo-

metrical inventions which increase from day to day and in this learned century seem to

grow beyond bounds if they must use the prolix and perfect method of the Ancients.”

Similar statements occur in other works of this period and even later.

A penetrating study of the analysis of this period has been given by D. T. Whiteside,

“Patterns of mathematical thought in the later seventeenth century,” Archive for History

of Exact Sciences 1 (1961), 179-388.

We begin our selections with excerpts from Stevin and Kepler.

1 STEVIN. CENTERS OF GRAVITY

Simon Stevin (1548-1620), a Flemish-Dutch engineer and mathematician associated with

Prince Maurice of Orange, was one of the first to open a new and productive period in the

application of infinitesimals to mathematical problems. We show here how he determined

the center of gravity of a triangle. The selection is Stevin’s Beghinselen der Weegconst

(Elements of the art of weighing; Leiden, 1585); the translation is taken (with some minor

changes) from The principal works of Simon Stevin (Swets and Zeitlinger, Amsterdam),

I (1955), 229-233, 251-255.

THEOREM n. PROPOSITION II

The center of gravity of any triangle is in the line drawn from the vertex to the

middle point of the opposite side.

Supposition. Let ABC [Fig. 1] be a triangle of any form, in which from the

angle A to D, the middle point of the side BC, there is drawn the line AD.
What is required to prove. We have to prove that the center of gravity of the

triangle is in the line AD.
Preliminary

.

Let us draw EF, OH, IK parallel to BC, intersecting AD in L,

M, N; after that EG, OP, IQ, KB, HS, FT, parallel to AD.
Proof. Since EF is parallel to BC, and EO, FT to LD, EFTO will be a paral-

lelogram, in which EL is equal to LF, also to OD and DT, in consequence of

which the center of gravity of the quadrilateral EFTO is in DL, by the first

proposition of this book. 1 And for the same reason the center of gravity of the

1 Theorem I, Proposition I is: “The geometrical center of any plane figure is also its center
of gravity.” The proof is given for an equilateral triangle, a parallelogram, and a regular

pentagon. The meaning of the proposition is that when a figure has a center of symmetry,
it is its center of gravity. Then in Theorem II, Proposition II, Stevin discusses the case of an
arbitrary triangle, and for this he needs infinitesimals.
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parallelogram GHSP will be in LM

,

and ofIKRQ in MN~ and consequently the
center of gravity of the figure IKRHSFTOEPGQ, composed of the aforesaid
three quadrilaterals, will be in the line ND or AD. Now as here three quadri-
laterals have been inscribed in the triangle, so an infinite number of such quadri-
laterals can be inscribed therein, and the center of gravity of the inscribed figure

will always be (for the reasons mentioned above) in the line AD. But the more
such quadrilaterals there are, the less the triangle ABC will differ from the in-

scribed figure of the quadrilaterals. For if we draw lines parallel to BC through
the middle points of AN, NM, ML, LD, the difference of the last figure will be
exactly half of the difference of the preceding figure .

2 We can therefore, by
infinite approximation, place within the triangle a figure such that the difference

between the latter and the triangle shall be less than any given plane figure,

however small. From which it follows that, taking AD to be the center line of
gravity

,

3 the apparent weight of the part ADC will differ less from the apparent
weight of the part ADB than any plane figure that might be given, however
small, from which I argue as follows :

4

It is obviously assumed that the side A I? is divided into u equal segments (in the figure
ra = 4). The difference between the area A of the triangle ABC and that of the figure con-
sisting of (n — 1) parallelograms is A /n.

3 The statement that AD is the center line of gravity seems to mean thatAD is the vertical
through the point of suspension of the triangle at rest and hence, by the rule of statics quoted
by Stevin earlier in the book (Book I, Prop. 6: The center of gravity of a hanging solid is

always in its center line of gravity), the center of gravity is in AD. (Notes 2 and 3 are based
on footnotes in the Principal works, I).

4 Stevin here uses the form of the syllogism known in ancient logic as CAMESTRES
(vowels AEE, A universal affirmation, as all P are Q, E universal negation, as no P are Q).
He uses this formulation repeatedly (see Principal works, I, 143, note 2).
The reasoning amounts to this: When we know that the difference of two quantities A

and B is smaller than a quantity that can be taken as small as we like, then A = B. The
reductio ad absurdum, typical of the Greeks, is replaced by a syllogism.

It has been justly observed that Stevin’s way of reasoning constitutes an important step
in the evolution of the limit concept; see H. Bosmans, “Sur quelques exemples de la
theorie des limites chez Simon Stevin,” Annales de la Societe Scientifique de Bruxelles 37
(1913), 171-199; “L’Analyse infinitesimale chez Simon Stevin,” Mathesis 37 (1923), 12-18,
55-62, 105-109, summarized in sec. V of Bosmans, “Le mathematician beige Simon Stevin
de Bruges,” Periodico de mathematiche (ser. 4) 6 (1926), 231-261.
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A. Beside any different apparent gravities there may be placed a gravity less

than their difference;

0. Beside the present apparent gravities ADC and ADB there cannot be

placed any gravity less than their difference;

0. Therefore the present apparent gravities ADC and ADB do not differ.

Therefore AD is the center line of gravity, and consequently the center of

gravity of the triangle ABC is in it.

Conclusion. The center of gravity of any triangle therefore is in the line drawn

from the vertex to the middle point of the opposite side, which we had to prove.

Problem I, Proposition III. Given a triangle: to find its center of gravity.

Supposition. Let ABC be a triangle [Fig. 2],

Fig. 2

B

What is required to find. We have to find its center of gravity.

Construction. There shall be drawn from A to the middle point of BC the line

AD, likewise from C to the middle point ofAB the line CE, intersecting AI) in F.

I say that F is the required center of gravity.

Proof. The center of gravity of the triangle ABC is in the line AD, and also

in CE, by the second proposition. It is therefore F

,

which we had to prove.

Conclusion. Given therefore a triangle, we have found its center of gravity, as

required.

The next propositions deal with centers of gravity of specific figures; for instance,

Theorem V, Proposition VII, states that “the center of gravity of the quadrilateral with

two parallel sides is in the line joining the middle points of those sides,” and in Problem IV,

Proposition XII, we find that the center of gravity of any parabolic segment is at three-

fifths of its diameter. Stevin then finds the center of gravity of the parabolic segment at the

point E on A

D

such that AE : ED = 3:2.

Before we pass to Kepler and his approach to the limit concept, we shall quote the

formulation given by the Italian Luca Valerio (1552-1618) in his De centro gravitatis

solidorum (Rome, 1604; 2nd ed., Bologna, 1659):

“If a quantity, either greater or smaller than a first quantity, has had a proportion to a

quantity greater or smaller than a second quantity, with an excess or defect smaller than

any arbitrary quantity [excessu, vel defectu quantacumque proposita], then the first quantity

will have to the second the same proportion.”

For instance, if we wish to prove that the areas of two circles C1 and C2 are as the squares

of the diameters with the aid of inscribed (circumscribed) polygons, as Euclid does (Elements,

XII, Proposition 2), then these areas are the first and second quantity, and the smaller

(greater) quantities, differing from them by an arbitrary quantity, are the areas of the

inscribed (circumscribed) polygons with the same number of sides.
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Valerio’s statement is closer to the modern limit concept than Stevin’s. See Bosmans,
cited in note 4, and E. J. Dijksterhuis, De Elementen van Euclides (2 vols.; Noordhoff,
Groningen, 1929, 1930), II, 242.

2 KEPLER. INTEGRATION METHODS

Johann Kepler (1571-1630) is best known as an astronomer. He was a professor at Graz
(1593-1599), assistant to Tycho Brahe and in 1601 became imperial mathematician at the
court of the Austrian emperors at Prague. From 1612 to 1626 he taught at Linz. His work
led him to many questions now solved by means of the calculus. In his Astronomia nova
(Heidelberg, 1609), in which he announced the first and second “laws of Kepler,” he has
computations equivalent to our

\

r,

Q
sin cp dcp = 1 — cos <p, and attempted a solution of

“Kepler’s equation,” x = e sin x + m (e, m constants). He dedicated his Nova stereometria

doliorum vinariorum (New solid geometry of wine barrels; Linz, 1615) to the computation
of the volume of solids obtained by the rotation of conics about a line in their plane, of
which we select a simple section to show Kepler’s nonrigorous but direct approach. In his

computations of the volumes of surfaces of rotation, he took his axis of rotation in different

directions (parallel to the principal axis, the other axis, a diameter, a tangent), either pass-
ing through the center, intersecting the conic section, not intersecting it, or tangent to it,

and so arrived at 92 solids. Some of these solids already had names, such as sphere, conoid,
and spheroid; to the others he gave names such as apple

[malus ], lemon [citrium], pear,
plum, nut, and so forth.

Our selections are taken from the Opera, ed. Frisch (Heyder and Zimmer, Frankfurt,
Erlangen, 1863), IV, 557-558, 582-584, or Gesammelte Werke, ed. M. Caspar (Beck, Munchen,
1960), IX, 13-16, 47-49. There exists a German translation of the book in Ostwald’s
Klassiker, No. 165, ed. R. Klug (Engelmann, Leipzig, 1908).

Part I. The Solid Geometry of Regular Bodies

Theorem I. We first need the knowledge of the ratio between circumference
and diameter. Archimedes taught:

The ratio of circumference to diameter is about 22 : 7. To prove it we use figures

inscribed in and circumscribed about the circle. Since there is an infinite number
of such figures, we shall, for the sake of convenience, use the hexagon [Fig. 1],
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Let a regular hexagon CDB be inscribed in the circle; let its angles be C, D, B, its

side DB, and F the point of intersection of the two tangents at D and B
respectively. The line AF connects the center A with F

,

and intersects the line

DB at G, the curve DB at E. But as DOB is a straight line, it is the shortest

distance between D and B.

DEB

,

on the other hand, being a curve, is not the shortest distance between

D and B. Hence DEB is longer than DGB. On the other hand, BF is tangent to

the circle and therefore all parts of the curve EB are between FB and GB;

therefore, if EB were straight, it would altogether be shorter than FB. For

AEB. FEB are equivalent to a right angle, and, as EFB is an acute angle,

EB, opposite the smaller angle EFB, must be smaller than FB, since this is

opposite the larger angle. And we can consider EB a straight line, because in the

course of the proof the circle is cut into very small arcs, which appear to be

equal to straight lines.
1

Now since, as can be observed, the curve DEB is contained in the triangle

DBF, it must be smaller than the lines DF, FB, since it bends toward the angle

DFB, and still has not the slightest part outside the lines DF, FB; but the

containing, according to common sense, is greater than the contained. 2 This

would be dilferent, were the curve DEB winding and irregular.

But as DB is a side of the inscribed hexagon, and DF, FB are two halves of

the circumscribed hexagon, arc DEB must be a sixth of the circle, since it was

greater than DB and smaller than DF, FB; 6 DB is smaller than the circum-

ference of the circle and 12 DF (or FB) is greater than the circumference.

But the side DB of the regular hexagon is equal to the radius AB. Therefore

6 radii AB, that is, three diameters CB or (if the diameter is divided by 7) CB
are shorter than the circumference.

And again, since DG, GB are equal, GB is half of AB. The square of AB,
however, is equal to the sum of the squares of A

G

and GB and is the quadruple

of the square of GB. Therefore the square of AG is three times the square of GB.
The ratio therefore of the squares of AB and AG is | of the lines, therefore the

ratio AB :AG is V§ ,
that is, the ratio of the numbers 100,000 : 86,603. 3 But as

AG-.AB = GB'.BF, then also BF:GB is vf and as GB is half of AB, for

example, 50,000, BF must have about 57,737 of such parts. Twelvefold this

total number therefore will be greater than the circumference of the circle.

Computation gives the number 477,974 for those circles which have 200,000 for

1 This statement of Kepler’s was attacked by Paul Guldin, in his Centrobaryca seu de

centro gravitatis (2 vols.; Vienna, 1635, 1641). There exists no geometric proof whatever,
wrote Guldin, that a circular arc, be it as small as you like, may be equated to a straight

line. Guldin (1577-1645), a Swiss-born Jesuit mathematician who taught in Rome, Vienna,
and Graz, was critical not only of the methods of Kepler, but also of those of Cavalieri. His
book also contains the “rules of Guldin”; see note 7.

2 Here Guldin criticized again: if this were evident, then Archimedes would not have
found it necessary (in De sphaero et cylindro) to prove that the circumference of a polygon
circumscribed about a circle is larger than that of a circle: “ In geometry we should not trust
too much in what is evident.”

3 Kepler wrote “one-half of f ”
[semi-sesquitertia ], expressing the square root by “one-

half,” a mode of expression that goes back to Boethius (sixth century a.d.) and even to
Euclid. See Tropfke, Oeschichte

, II (1933), 81. This mode of expression, with its “logarith-

mic” flavor, has a relation to the ancient theory of music.
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diameter. And those of diameter 7 have for twelve times BF the value 24
minus yo. But this number is greater than the circumference itself; on the other
hand the number 21 is smaller than the said circumference. And it is obvious
that the curve BE is nearer to BG than the line BF. The circumference therefore
is nearer the number 21 than 24 - T

]

0
4 We suppose it differs by 1 from 21, from

the other by 2 — and that it therefore doubtless is 22. This, however,
Archimedes shows much more accurately by means of multisided figures of 12,

24, 48 sides; there it also becomes apparent how little the difference of the
circumference from 22 is. Adrianus Romanus proved by the same method that
when the diameter is divided into 20,000,000,000,000,000 parts, then about
62,831,853,071,795,862 of those parts make up the circumference. 5

Remark [Episagma]. Of the three conical lines, which are called parabola,
hyperbola, and ellipse, the ellipse is similar to the circle, and I showed in the
Commentary on the motions of Mars that the ratio of the length of the elliptic

line to the arithmetic mean of its two diameters (which are called the right and
transversal axes) is about equal to 22 :7.

6

Theorem II. The area of a circle compared with the area of the square erected

on the diameter has about the ratio 11:14.

Archimedes uses an indirect proof in which he concludes that if the area
exceeds this ratio it is too large. The meaning of it seems to be this [Fig. 2],

G

The circumference of the circle BG has as many parts as points, namely, an
infinite number, each of these can be regarded as the base of an isosceles triangle
with equal sides AB, so that there are an infinite number of triangles in the area
of the circle. They all converge with their vertices in the center A. We now
straighten the circumference of circle BG out into the line BC, equal to it. The
bases of these infinite triangles or sectors are therefore all supposed to be on the
straight line BC, arranged one next to the other. Let BF be one of these bases,
and CE any other, equal to it, and let the points F, E, C be connected with A.
Since there are as many triangles ABF, AEC over the line BC as there are
sectors in the area of the circle, and the bases BF, EC are equal, and all have
the altitude BA in common (which is also one of the sectors), the triangles EAC,
BAF will be equal, and equal to one of the circle sectors. As they all have their

4 The actual value is 12 -f tan 30° = 24.25. Kepler writes “24, minus decima.”
6 Adriaen Van Roomen (1561-1615) had published this in his Ideae mathematicae (Lou-

vain, 1593).

6 F°r thlS aPProximati°n of the circumference G of the ellipse of semiaxes a and b as
C = '\-(a + b), see Kepler’s Astronomia nova (Heidelberg, 1609), Gesammelte Werke, ed.
Caspar, III, 368. This statement of Kepler’s was also criticized by Guldin. However, for
planetary orbits, with small eccentricity, Kepler’s approximation was not bad; if developed
up to fourth powers of the eccentricity e, it is only Wwe4 greater than the circumference C
(ibid.. Ill, 484; IV, 480).
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bases on BC, the triangle BAC, consisting of all those triangles, will be equal to

all the sectors of the circle and therefore equal to the area of the circle which

consists of all of them. This is equivalent to Archimedes’ conclusion by means of

an absurdity.

If now we divide BC in half at H, then ABHD forms a parallelogram. Let

DH intersect AC in I. This parallelogram is equal to the circle in area. Indeed,

CB is to its half CII as AB (that is, 1)1I) is to its half IH. Therefore III — ID
and HC = DA (equal to BH). The angles at I are equal, and those at D and H
are right angles. The triangle ICH, which is outside the parallelogram, is equal

to triangle IAD by which the parallelogram exceeds the trapezoid AIHB.
If now the diameter GB is 7 parts, then its square will be 49. And since the

circumference consists of 22 such parts—hence also BC—its half BH will consist

of 11, hardly more or less. Multiply it by the semidiameter 3|, which is AB, and

we get for the rectangle AH 38-1 [38 semis]. Therefore, if the square of the diam-

eter is 49, the area of the circle is as twice 49 or 98 to 77. Dividing by 7 we
obtain 14 to 11, Q.E.D.

Corollary 1 . The area of the sector of a circle (consisting of straight lines from

the center intersecting the arc) is equal to the rectangle over the radius and half

the arc.

Corollary 2 deals with the area of a segment of a circle.

The next theorems deal with the cone, cylinder, and sphere. In a supplement Kepler

introduces conic sections and solids generated by these curves. Among the solids he discusses

we find the torus, which he calls a ring [annulus].

Theorem XVIII. Any ring with circular or elliptic cross section is equal to a

cylinder whose altitude equals the length of the circumference which the center of the

rotated figure describes, and whose base is the same as the cross section of the ring. 1

7 In Theorem I and Theorem II Kepler had replaced Archimedes’ reductio ad absurdum
with a more direct proof, and in a vague way identified the points on the circumference with
very small segments. His reasoning reminds us of Antiphon; see T. L. Heath, Manual of

Greek mathematics (Clarendon Press, Oxford, 1931), 140. In Theorems XVIII and XIX we
find the solid divided into very small disks. These theorems are special cases of the so-called

Guldin or Pappus theorem, which in the version of Pappus runs as follows: “The ratio of

two perfect [complete] surfaces of rotation is composed of the ratio of the rotated areas and
of that of the straight lines drawn perpendicularly to the axes of rotation from the centers of

gravity of the rotated areas of the axes”; Pappus, Mathematical collection
,
Book VII, trans.

Ver Eecke (see Selection III. 3, note 1), pp. 510-511. It should be pointed out that some
scholars believe that this theorem is a later insertion. Kepler and Guldin probably found
their theorems independently of Pappus.
The special case of the torus, which interested Kepler here, can be found in Heron’s

Metrica (c. a.d. 100), where it is attributed to a certain Dionysodoros (probably second

century b.c.), author of a lost treatise on the torus (Heath, Manual of Greek mathematics
,

p. 385). Guldin, referring to Kepler’s theorems on figures of rotation, stated his own rules

and pointed out that Kepler had almost found them.
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By cross section is meant the intersection of a plane through the center of the
ring-shaped space and perpendicular to the ring-shaped surface. The proof of

this theorem follows partly from theorem XVI s and can be established by the

same means by which Archimedes taught as the principles of solid geometry.

Indeed, if we cut the ring GCD [Fig. 3] from its center A into an infinite num-
ber of very thin disks, any one of them will be the thinner toward the center A,

the nearer its part, such as E, lies to the center A than to F and the normal
through F erected in the intersecting plane to the line ED. It also will be the

thicker the nearer it is to the point D. At such two extreme points, such as D
and E, the sum of the two thicknesses will be twice the one in the middle of the

disk.

This consideration would not be valid if the parts at E and D of the disk on
either side of the circumference FG and the perpendiculars through F and G
were not equal and equally situated.

Corollary. This mode of measuring is valid for circular and for elliptical rings

as well, high, narrow, or reclining, for open and closed rings alike, as indeed even
for all rings whatever shape their cross section may have (instead of the circle

ED)—so long as in the plane through AD perpendicular to the ring the parts on
either side of F are equal and equally situated. We shall explore this in the case

of a square section. Let the ring be of square shape and assume the square to be
on ED. This ring can also be measured in another way. For it is the outer part

of a cylinder whose base is a circle with AD as radius and whose height is DE.
From this cylinder, according to Theorem XVI, the middle part has to be sub-

tracted, that is, the cylinder whose base is the circle of radius AE and whose
height is ED. The product, therefore, ofED and the circular area AD minus the

circular area AE is equal to the volume of the ring with a square as cross

section. And ifED is multiplied by the difference of the squares ofAD and AE,
then the ratio of this body to the fourth part of the ring would be as the square
to the circle, therefore as 14 to 11. Let AE be equal to 2, AD equal to 4, then
its square is 16; but the square ofAE is 4, therefore the difference of the squares

is 12; this number multiplied by the altitude 2 gives the volume as 24, of which
the quadruple is 96. Since 14 is to 11 as 96 : 75-f ,

the volume of the square ring is

75f. This is according to the computation of Theorem XVI. And according to

the preceding method, ifAF is 3, FG is 6. Since 7 is to 22 as 6 is to 19 minus
this therefore will be the length of the circumference FG, the altitude of the
cylinder. And since ED = 2, its square is 4. To obtain the base of the cylinder,

8 Theorem XVI deals with the ratio of conical segments of the same height and different
bases.
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multiply therefore 4 by (19 — f). In this way also we see the truth of the

theorem.

Theorem XIX and Analogy. A closed ring is equal to a cylinder whose base is

the circle of the cross section and whose height equals the circumference of the circle

described by its center.

As this method is valid for every ring, whatever the ratio of AE and AF may
be, therefore it also holds for a closed ring, in which the center F of the circle

ED describes the circle FG, where FG is equal to the rotated AD itself. This is

because such a closed ring is intersected from A in disks that have no thickness

at A and at D twice the thickness of that at F. Hence the circle through D is

twice that through F.

Corollary. The cylindric body that is created by rotation of MIKN [Fig. 4a],

the four-sided figure of straight and curved lines, is according to the same con-

sideration equal to a column with this figure as base and the length of the circle

FG as height. But the outer fringe IKD that surrounds the cylindric body—as a

wooden hoop surrounds a barrel—clearly does not yield to this theorem, and
must be computed by other means.

Analogy. Moreoever, this method is valid for all cylindric bodies or parts of

apples (or figs), no matter how slender, until I, K coincide with M, N, which

happens in the formation of the sphere [Fig. 46], where instead of the two lines

MN and IK there exists only one, namely, BC. For this body the demonstration

and use of this theorem fail for the first time.

Corollary. The ratio of the sphere to the closed ring created by the same circle

is 7 to 33, since one-third of the radius multiplied by four times the area of the

greatest circle, or two-thirds of the diameter multiplied by the area of the

greatest circle, produce a cylinder equal to the sphere. 9 And a cylinder equal to

the closed ring has the same base, and its altitude is the circumference [formed

by the center]. Therefore as the circumference is to two-thirds of the diameter,

that is, 33 : 7,
10 so is the ring to the sphere. 11

9 The text writes “cube.”
10 The ratio is 3w : 2.

11 On Kepler there exists in English a symposium of the History of Science Society,

Johann Kepler 1571-1630, a tercentenary commemoration of his work (Williams and Wilkins,

Baltimore, 1931).
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3 GALILEI. ON INFINITES AND INFINITESIMALS

Galileo Galilei (1564-1642) was from 1589 to 1610 professor, first at Pisa, then at Padua, and
in 1610 became first mathematician at the grand-ducal court of Tuscany. With the newly
invented telescope he discovered, in 1610, that Jupiter had four satellites; this and other

startling facts led him to a defense of the Copernican system in his Dialogo sopra due massimi
sistemi del mondo (Florence, 1632). Confined to Florence after his condemnation by the Holy
Office, he published his ideas on kinematics and elasticity in the Discorsi e dimostrazioni

matematiche intorno a due nuove scienze attenenti alia mecanica e ai movimenti loculi (Leiden,

1638), which contain discussions on the infinite and the infinitesimal.

Galilei never wrote a book on the purely mathematical aspects of his work, but we find

them discussed among other questions. His pupils Cavalieri and Torricelli later gave full

elaboration to his ideas on problems dealing with infinitesimals (see Selections IV. 5, 6, 9).

In the Discorsi of 1638, in which Galilei laid the foundations of modern mechanics, we see

him (as Salviati) discussing with Simplicio some of the fundamental difficulties one meets in

the concepts of infinite and infinitesimal. Such difficulties were already widely discussed in

antiquity, and equally among the scholastic writers. Galilei made some points clear, such
as the difference between actual and potential infinity and the “equality” in number of the
natural numbers and their squares, which play an important role in the modern theory of

aggregates as developed by Georg Cantor. The text shows that Galilei was not afraid of the
scholastic “indivisible,” of letting a line segment be an aggregate of infinitely many points,

and of accepting the line continuum as an actual infinite.

Galilei’s Discorsi can be consulted in Le opere di Galileo Galilei, edizione nazionale (ed.

A. Favaro, 20 vols.; Barbera, Florence, 1890-1909), VIII, 39-318. Our selection is taken
from this book and is based on the English translation by H. Crew and A. De Salvio entitled:

Dialogues concerning two new sciences (Macmillan, New York, 1914; reissued by North-
western University, Evanston and Chicago, Illinois, 1939), 71-68 (Opere, VIII, 68-78).

Salviati. . . . Now since we have arrived at paradoxes let us see if we cannot
prove that within a finite extent it is possible to discover an infinite number of

vacua. At the same time we shall at least reach a solution of the most remarkable
of all that list of problems which Aristotle himself calls wonderful; I refer to his

Questions in Mechanics

}

This solution may be no less clear and conclusive than

1 The Questions in mechanics (also translated as Mechanical problems) is a collection of
mechanical problems and their solutions; it is not a work of Aristotle (384-322 b.c.) but
probably originated in his school, perhaps composed in the time of his successors, Theo-
phrastus or Strato (322-269 b.c.). The book contains the parallelogram of velocities, and also

the problem called that of the rota Aristotelis, the wheel that Galilei discusses in connection
with Fig. 1. See Aristotle, minor works, with an English translation by W. S. Hett (Harvard
University Press, Cambridge, Mass., 1936), 330-441. The rota Aristotelis is the subject of
Problem 24, which begins as follows: “A difficulty arises as to how it is that the greater
circle when it revolves traces out a path of the same length as a smaller circle, if the two are
concentric. When they are revolved separately, then the paths along which they travel are
in the same ratio as their respective sizes.” We now say that when the larger circle AB
(Fig. 1) rolls on BF, then the same smaller circle AC, fixed to circle AB, rolls and slides

along CE. See further G. S. Klvigel, Mathematisches Worterbuch (Schwickert, Leipzig, 1823),
IV, under “Rad, Aristotelisches.” We meet the rota Aristotelis again when the cycloid is

investigated; see Selection IV.10..
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that which he himself gives and quite different also from that so cleverly

expounded by the most learned Monsignor di Guevara. 2

First it is necessary to consider a proposition, not treated by others, but one
upon which depends the solution of the problem and from which, if I mistake
not, we shall derive other new and remarkable facts. For the sake of clearness

let us draw an accurate figure [Fig. 1], About G as a center describe an equi-

angular and equilateral polygon of any number of sides, say the hexagon

ABCDEF. Similar to this and concentric with it, describe another smaller one
which we shall call HIKLMN. Prolong the side AB, of the larger hexagon,
indefinitely toward N; in like manner prolong the corresponding side III of the

smaller hexagon, in the same direction, so that the line HT is parallel to AN;
and through the center draw the line GV parallel to the other two. This done,

imagine the larger polygon to roll upon the line AN, carrying with it the smaller

polygon. It is evident that, if the point B, the end of the side AB, remains fixed

at the beginning of the rotation, the point A will rise and the point C will fall

describing the arc CQ until the side BC coincides with the line BQ, equal to BC.
But during this rotation the point I, on the smaller polygon, will rise above the

line IT because IB is oblique to AN; and it will not again return to the line IT
until the point C shall have reached the position Q. The point I, having des-

cribed the arc 10 above the line HT, will reach the position 0 at the same time
the side IK assumes the position OP; but in the meantime the center G has
traversed a path above G V and does not return to it until it has completed the

arc GC. This step having been taken, the larger polygon has been brought to rest

with its side BC coinciding with the line BQ while the side IK of the smaller

polygon has been made to coincide with the line OP, having passed over the

portion 10 without touching it; also the center G will have reached the position

C after having traversed all its course above the parallel line GV. And finally the

2 Giovanni di Guevara (1561—1651), in later life bishop of Teano, was a correspondent of
Galilei’s. One of their points of discussion was Aristotle’s Questions in mechanics.
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entire figure will assume a position similar to the first, so that if we continue the

rotation and come to the next step, the side DC of the larger polygon will co-

incide with the portion QX and the side KL of the smaller polygon, having first

skipped the arc PY, will fall on YZ, while the center still keeping above the

line GV will return to it at R after having jumped the interval CR. At the end of

one complete rotation the larger polygon will have traced upon the line AS,

without break, six lines together equal to its perimeter; the lesser polygon will

likewise have imprinted six lines equal to its perimeter, but separated by the

interposition of five arcs, whose chords represent the parts ofHT not touched by
the polygon: the center G never reaches the line GV except at six points. From
this it is clear that the space traversed by the smaller polygon is almost equal to

that traversed by the larger, that is, the line HT approximates the line AS,

differing from it only by the length of one chord of one of these arcs, provided

we understand the line HT to include the five skipped arcs.

Now this exposition which I have given in the case of these hexagons must be

understood to be applicable to all other polygons, whatever the number of sides,

provided only they are similar, concentric, and rigidly connected, so that when
the greater one rotates the lesser will also turn, however small it may be. You
must also understand that the lines described by these two are nearly equal

provided we include in the space traversed by the smaller one the intervals

which are not touched by any part of the perimeter of this smaller polygon.

Let a large polygon of, say, one thousand sides make one complete rotation

and thus lay off a line equal to its perimeter; at the same time the small one will

pass over an approximately equal distance, made up of a thousand small por-

tions each equal to one of its sides, but interrupted by a thousand spaces which,

in contrast with the portions that coincide with the sides of the polygon, we
may call empty. So far the matter is free from difficulty or doubt.

But now suppose that about any center, say A, we describe two concentric

and rigidly connected circles; and suppose that from the points C and B, on

their radii, there are drawn the tangents CE and BF and that through the

center A the line AD is drawn parallel to them
;
then if the large circle makes one

complete rotation along the line BF, equal not only to its circumference but

also to the other two lines CE and AD, tell me what the smaller circle will do

and also what the center will do. As to the center it will certainly traverse and

touch the entire line AD while the circumference of the smaller circle will have

measured off by its points of contact the entire line CE, just as was done by the

above-mentioned polygons. The only difference is that the line HT was not

at every point in contact with the perimeter of the smaller polygon, but there

were left untouched as many vacant spaces as there were spaces coinciding with

the sides. But here in the case of the circles the circumference of the smaller one

never leaves the line CE, so that no part of the latter is left untouched, nor is

there ever a time when some point on the circle is not in contact with the straight

line. How now can the smaller circle traverse a length greater than its circum-

ference unless it go by jumps?

Sagredo. It seems to me that one may say that just as the center of the circle,

by itself, carried along the line AH is constantly in contact with it, although it is

only a single point, so the points on the circumference of the smaller circle,
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carried along by the motion of the larger circle, would slide over some small

parts of the line CE.

Salviati. There are two reasons why this cannot happen. First because there

is no ground for thinking that one point of contact, such as that at C, rather

than another, should slip over certain portions of the line CE. But if such slidings

along CE did occur, they would be infinite in number since the points of contact

(being mere points) are infinite in number: an infinite number of finite slips will

however make an infinitely long line, while as a matter of fact the line CE is

finite. The other reason is that as the greater circle, in its rotation, changes its

point of contact continuously, the lesser circle must do the same because B is

the only point from which a straight line can be drawn to A and pass through C.

Accordingly the small circle must change its point of contact whenever the large

one changes: no point of the small circle touches the straight line CE in more
than one point. Not only so, but even in the rotation of the polygons there was
no point on the perimeter of the smaller which coincided with more than one

point on the line traversed by that perimeter; this is at once clear when you
remember that the line IK is parallel to BC and that therefore IK will remain

above IP until BC coincides with BQ, and that IK will not lie upon IP except

at the very instant when BC occupies the position BQ; at this instant the entire

line IK coincides with OP and immediately afterward rises above it.

Sagredo. This is a very intricate matter. I see no solution. Pray explain it

to us.

Salviati. Let us return to the consideration of the above-mentioned polygons

whose behavior we already understand. Now in the case of polygons with

100,000 3 sides, the line traversed by the perimeter of the greater, i.e., the line

laid down by its 100,000 sides one after another, is equal to the line traced out

by the 100,000 sides of the smaller, provided we include the 100,000 vacant

spaces interspersed. So in the case of the circles, polygons having an infinitude

of sides, the line traversed by the continuously distributed infinitude of sides is

in the greater circle equal to the line laid down by the infinitude of sides in the

smaller circle but with the exception that these latter alternate with empty
spaces; and since the sides are not finite in number, but infinite, so also are the

intervening empty spaces not finite but infinite. The line traversed by the larger

circle consists then of an infinite number of points which completely fill it, while

that which is traced by the smaller circle consists of an infinite number of points

which leave empty spaces and only partly fill the line. And here I wish you to

observe that after resolving and dividing a line into a finite number of parts,

that is, into a number which can be counted, it is not possible to arrange them
again into a greater length than that which they occupied when they formed a

continuum 4 and were connected without the interposition of as many empty
spaces. But if we consider the line resolved into an infinite number of infinitely

small and indivisible parts, we shall be able to conceive the line extended

indefinitely by the interposition, not of a finite, but of an infinite number of

infinitely small indivisible empty spaces.

3 Galilei uses words: cento mila lati.
4 Italian: stavano continuate.
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Now this which has been said concerning simple lines must be understood to

hold also in the case of surfaces and solid bodies, it being assumed that they are

made up of an infinite, not a finite, number of atoms. Such a body once divided

into a finite number of parts, it is impossible to reassemble them so as to occupy

more space than before unless we interpose a finite number of empty spaces, that

is to say, spaces free from the substance of which the solid is made. But if we
imagine the body, by some extreme and final analysis, resolved into its primary

elements, infinite in number, then we shall be able to think of them as indefi-

nitely extended in space, not by the interposition of a finite, but of an infinite

number of empty spaces. Thus one can easily imagine a small ball of gold ex-

panded into a very large space without the introduction of a finite number of

empty spaces, always provided the gold is made up of an infinite number of

indivisible parts.

After a short intermission, in which Simplicio praises the religious mind of Salviati,

Simplicio continues:

But to return to our subject, your previous discourse leaves with me many
difficulties which I am unable to solve. First among these is that, if the circum-

ferences of the two circles are equal to the two straight lines, CE and BF, the

latter considered as a continuum, the former as interrupted with an infinity of

empty points, I do not see how it is possible to say that the line AD described

by the center, and made up of an infinity of points, is equal to this center which

is a single point. Besides, this building up of lines out of points, divisibles out of

indivisibles, and finites out of infinites, offers me an obstacle difficult to avoid;

and the necessity of introducing a vacuum, so conclusively refuted by Aristotle,

presents the same difficulty.

Salviati. These difficulties are real; and they are not the only ones. But let

us remember that we are dealing with infinities and indivisibles, both of which

transcend our finite understanding, the former on account of their magnitude,

the latter because of their smallness. In spite of this, men cannot refrain from

discussing them, even though it must be done in a roundabout way.

To explain some of his ideas, Salviati goes on:

How can a single point be equal to a line ? Since I cannot do more at present I

shall attempt to remove, or at least diminish, one improbability by introducing

a similar or a greater one, just as sometimes a wonder is diminished by a miracle.

And this I shall do by showing you two equal surfaces, together with two

equal solids located upon these same surfaces as bases, all four of which diminish

continuously and uniformly in such a way that their remainders always preserve
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equality among themselves, and finally both the surfaces and the solids ter-

minate their previous constant equality by degenerating, the one solid and the

one surface into a very long line, the other solid and the other surface into a
single point; that is, the latter to one point, the former to an infinite number of

points.

Sagredo. This proposition appears to me wonderful, indeed; but let us hear
the explanation and demonstration.

Salviati. Since the proof is purely geometrical we shall need a figure [Fig. 2],

Let AFB be a semicircle with center at G ; about it describe the rectangle ADEB

and from the center draw the straight lines CD and CE to the points D and E.

Imagine the radius CF to be drawn perpendicular to either of the lines AB or

DE, and the entire figure to rotate about this radius as an axis. It is clear that
the rectangle ADEB will thus describe a cylinder, the semicircle AFB a hemi-
sphere, and the triangle CDE a cone. Next let us remove the hemisphere but
leave the cone and the rest of the cylinder, which, on account of its shape, we
will call a ‘ bowl.” First we shall prove that the bowl and the cone are equal;

then we shall show that a plane drawn parallel to the circle which forms the base
of the bowl and which has the line DE for diameter and F for a center—a plane

whose trace is GN—cuts the bowl in the points G, I, 0, N, and the cone in the

points H, L, so that the part of the cone indicated by CHL is always equal to the
part of the bowl whose profile is represented by the triangles GA1 and BON.
Besides this we shall prove that the base of the cone, i.e., the circle whose
diameter is HL, is equal to the circular surface which forms the base of this

portion of the bowl, or, as one might say, equal to a ribbon whose width is GI.

(Note by the way the nature of mathematical definitions which consist merely
in the imposition of names, or, if you prefer, abbreviations of speech established

and introduced in order to avoid the tedious drudgery which you and I now
experience simply because we have not agreed to call this surface a “circular

band ” and that sharp solid portion of the bowl a “round razor.”) Now call them
by what name you please, it suffices to understand that the plane, drawn at any
height whatever, so long as it is parallel to the base, i.e., to the circle whose
diameter is DE, always cuts the two solids so that the portion CHL of the cone
is equal to the upper portion of the bowl; likewise the two areas which are the

bases of these solids, namely, the band and the circle HL, are also equl. Here we
have the miracle mentioned above; as the cutting plane approaches the line AB
the portions of the solids cut off are always equal, so also the areas of their bases.
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And as the cutting plane comes near the top, the two solids (always equal) as

well as their bases (areas which are also equal) finally vanish, one pair of them
degenerating into the circumference of a circle, the other into a single point,

namely, the upper edge of the bowl and the apex of the cone. Now, since as these

solids diminish equality is maintained between them up to the very last, we are

justified in saying that, at the extreme and final end of this diminution, they are

still equal and that one is not infinitely greater than the other. It appears, there-

fore, that we may equate the circumference of a large circle to a single point.

And this which is true of the solids is true also of the surfaces which form their

bases; for these also preserve equality between themselves throughout their

diminution and in the end vanish, the one into the circumference of a circle, the

other into a single point. Shall we not then call them equal, seeing that they are

the last traces and remnants of equal magnitudes ? Note also that, even if these

vessels were large enough to contain immense celestial hemispheres, both their

upper edges and the apexes of the cones therein contained would always remain
equal and would vanish, the former into circles having the dimensions of the

largest celestial orbits, the latter into single points. Hence in conformity with the

preceding we may say that all circumferences of circles, however different, are

equal to each other, and are each equal to a single point.

Sagredo. This presentation strikes me as so clever and novel that, even if I

were able, I would not be willing to oppose it; for to deface so beautiful a

structure by a blunt pedantic attack would be nothing short of sinful. But for our

complete satisfaction pray give us this geometrical proof that there is always

equality between these solids and between their bases; for it cannot, I think,

fail to be very ingenious, seeing how subtle is the philosophical argument based
upon this result.

Salviati. The demonstration is both short and easy. Referring to the pre-

ceding figure, since IPC is a right angle the square of the radius IC is equal to

the sum of the squares on the two sides IP, PC; but the radius IC is equal to

AC and also to GP, while CP is equal to PH. Hence the square of the line GP is

equal to the sum of the squares of IP and PH, or multiplying through by 4, we
have the square of the diameter GN equal to the sum of the squares on 10 and
HL. And, since the areas of circles are to each other as the squares of their

diameters, it follows that the area of the circle whose diameter is GN is equal to

the sum of the areas of circles having diameters 10 and HL, so that if we remove
the common area of the circle having 10 for diameter the remaining area of the

circle GN will be equal to the area of the circle whose diameter is HL. So much
for the first part. As for the other part, we leave its demonstration for the

present, partly because those who wish to follow it will find it in the twelfth

proposition of the second book of De centro gravitatis solidorum by the Archi-

medes of our age, Luca Valerio, 6 who made use of it for a different object, and
partly because, for our purpose, it suffices to have seen that the above-mentioned
surfaces are always equal and that, as they keep on diminishing uniformly, they
degenerate, the one into a single point, the other into the circumference of a

circle larger than any assignable; in this fact lies our miracle.

5 See Selection IV. 1.
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Sagredo. The demonstration is ingenious and the inferences drawn from it

are remarkable.

After some further discussion, Salviati continues:

One of the main objections urged against this building up of continuous
quantities out of indivisible quantities [continuo d’indivisibili] is that the addi-
tion of one indivisible to another cannot produce a divisible, for if this were so
it would render the indivisible divisible. Thus if two indivisibles, say two points,

can be united to form a quantity, say a divisible line, then an even more divisible

line might be formed by the union of three, five, seven, or any other odd number
of points. Since, however, these lines can be cut into two equal parts, it becomes
possible to cut the indivisible which lies exactly in the middle of the line. In
answer to this and other objections of the same type we reply that a divisible

magnitude cannot be constructed out of two or ten or a hundred or a thousand
indivisibles, but requires an infinite number of them.

Simplicio. Here a difficulty presents itself which appears to me insoluble.

Since it is clear that we may have one line greater than another, each containing
an infinite number of points, we are forced to admit that, within one and the
same class, we may have something greater than infinity, because the infinity

of points in the long line is greater than the infinity of points in the short line.

This assigning to an infinite quantity a value greater than infinity is quite
beyond my comprehension.

Salviati. This is one of the difficulties which arise when we attempt, with our
finite minds, to discuss the infinite, assigning to it those properties which we
give to the finite and limited; but this I think is wrong, for we cannot speak of
infinite quantities as being the one greater or less than or equal to another. To
prove this I have in mind an argument which, for the sake of clearness, I shall

put in the form of questions to Simplicio, who raised this difficulty.

Here follows the argument that, when we compare the sequences 1, 2, 3, 4, . . . and
1, 4, 9, 16, . .

. ,
a one-to-one correspondence can be established between the numbers of the

first and those of the second sequence, l<-> 1, 2<->4, 3o9,.... Then this argument is

transferred to continua: “One line does not contain more or less or just as many points as
another, but each line contains an infinite number.” Salviati continues with the discussion
of the rota Aristotelis, after remarks by Simplicio and Sagredo:

Simplicio. Leaving this to one side for the moment, I should like to hear how
the introduction of these indivisible quantities helps us to understand contrac-
tion and expansion, avoiding at the same time the vacuum and the penetrability
of bodies.



206
|

IV ANALYSIS BEFORE NEWTON AND LEIBNIZ

Sagredo. I also shall listen with keen interest to this same matter, which is

far from clear in my mind; provided I am allowed to hear what, a moment ago,

Simplicio suggested we omit, namely, the reasons which Aristotle offers against

the existence of the vacuum and the arguments which you must advance in

rebuttal.

Salviati. I will do both. And first, just as, for the production of expansion,

we employ the line described by the small circle during one rotation of the large

one—a line greater than the circumference of the small circle—so, in order to

explain contraction, we point out that, during each rotation of the smaller

circle, the larger one describes a straight line which is shorter than its circum-

ference.

For the better understanding of this we proceed to the consideration of what
happens in the case of polygons. Employing a figure similar to the earlier one

[Fig. 3], construct the two hexagons, ABC and HIK. about the common center

L, and let them roll along the parallel lines ROM and A Be. Now holding the

vertex I fixed, allow the smaller polygon to rotate until the side IK lies upon the

parallel, during which motion the point K will describe the arc KM, and
the side KI will coincide with IM

.

Let us see what, in the meantime, the side CB
of the larger polygon has been doing. Since the rotation is about the point 1, the

terminal point B of the line IB, moving backward, will describe the arc Bb under-

neath the parallel cA so that, when the side KI coincides with the line MI, the

side BC will coincide with be, having advanced only through the distance Be,

but having retreated through a portion of the line BA which subtends the arc

Bb. If we allow the rotation of the smaller polygon to go on it will traverse and
describe along its parallel a line equal to its perimeter; while the larger one will

traverse and describe a line less than its perimeter by as many times the length

bB as there are sides less one; this line is approximately equal to that described

by the smaller polygon, exceeding it only by the distance bB. Here now we see,

without any difficulty, why the larger polygon, when carried by the smaller, does

not measure off with its sides a line longer than that traversed by the smaller

one; this is because a portion of each side is superposed upon its immediately

preceding neighbor.
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Let us next consider two circles, having a common center at A, and lying upon

their respective parallels, the smaller being tangent to its parallel at the point

B; the larger, at the point C. Here when the small circle commences to roll the

point B does not remain at rest for a while so as to allow BC to move backward

and carry with it the point C, as happened in the case of the polygons, where the

point I remained fixed until the side KI coincided with MI and the line IB
carried the terminal point B backward as far as b, so that the side BC fell upon

be, thus superposing upon the line BA the portion Bb, and advancing by an

amount Be, equal to MI, that is, to one side of the smaller polygon. On account

of these superpositions, which are the excesses of the sides of the larger over the

smaller polygon, each net advance is equal to one side of the smaller polygon

and, during one complete rotation, these amount to a straight line equal in

length to the perimeter of the smaller polygon.

But now reasoning in the same way concerning the circles, we must observe

that, whereas the number of sides in any polygon is comprised within a certain

limit, the number of sides in a circle is infinite; the former are finite and divisible;

the latter infinite and indivisible. In the case of the polygon, the vertices remain

at rest during an interval of time which bears to the period of one complete

rotation the same ratio which one side bears to the perimeter; likewise, in the

case of the circles, the delay of each of the infinite number of vertices is merely

instantaneous, because an instant is such a fraction of a finite interval as a point

is of a line which contains an infinite number of points. The retrogression of the

sides of the larger polygon is not equal to the length of one of its sides but merely

to the excess of such a side over one side of the smaller polygon, the net advance

being equal to this smaller side; but in the circle the point or side 0, during the

instantaneous rest of B, recedes by an amount equal to its excess over the side

B, making a net progress equal to B itself. In short, the infinite number of

indivisible sides of the greater circle with their infinite number of indivisible

retrogressions, made during the infinite number of instantaneous delays of the

infinite number of vertices of the smaller circle, together with the infinite num-

ber of progressions, equal to the infinite number of sides in the smaller circle

—

all these, I say, add up to a fine equal to that described by the smaller circle, a

line which contains an infinite number of infinitely small superpositions, this

bringing about a thickening or contraction without any overlapping or inter-

penetration of finite parts. This result could not be obtained in the case of a line

divided into finite parts such as is the perimeter of any polygon, which when

laid out in a straight line cannot be shortened except by the overlapping and

interpenetration of its sides. This contraction of an infinite number of infinitely

small parts without the interpenetration or overlapping of finite parts and the

previously mentioned expansion of an infiftite number of indivisible parts by the

interposition of indivisible vacua is, in my opinion, the most that can be said

concerning the contraction and rarefaction of bodies, unless we give up the

impenetrability of matter and introduce empty spaces of finite size. If you find

anything here that you consider worth while, pray use it; if not, regard it,

together with my remarks, as idle talk; but this remember, we are dealing with

the infinite and the indivisible.



208
|

IV ANALYSIS BEFORE NEWTON AND LEIBNIZ

4 GALILEI. ACCELERATED MOTION

An application of Galilei’s theory of indivisibles is his derivation of the law for uniformly
accelerated motion: if the acceleration is a, then v = at and s = \at2 = (\at)t, where l at is
the mean velocity between beginning and end. It will be seen that Galilei regards an'area
as generated by lines, or, we may say, as composed of lines—hence discarding the ancient
difficulty that a sum of points can never be a line, and a sum of lines can never be an area.
The text is again from the Dialogues concerning two new sciences, trans. H. Crew and
A. de Salvio, 166-167

;
the original text is found in Opere, VIII, 208-209.

The theorem had already appeared in scholastic writings (Selection III.l). P. Duhem.
Etudes sur Leonard de Vinci (Hermann, Paris, 1913), III, 388-398, called it “the rule of
Oresme. See also C. B. Boyer, History of the calculus (Dover, New York, 1959), 83, 113;
E. J. Dijksterhuis, The mechanization of the world picture (Clarendon Press, Oxford, 1961)!
197-198; and A. Maier, An der Grenze von Scholastik und Naturwissenschaft (2nd ed.;
Edizioni di Storia e Letteratura, Rome, 1953).

From Theorem I, Proposition I, Galilei could pass without infinitesimals to Theorem II.
Proposition II, which states that s 1 :s2 = tf: t§.

THEOREM I, PROPOSITION I

The time in which any space is traversed by a body starting from rest and
uniformly accelerated is equal to the time in which that same space would be
traversed by the same body moving at a uniform speed whose value is the mean
of the highest speed and the speed just before acceleration began.

Let us represent by the line AB [Fig. 1] the time in which the space CD is

traversed by a body which starts from rest at C and is uniformly accelerated;
let the final and highest value of the speed gained during the interval AD be
represented by the line EB drawn at right angles to AB; draw the line AE, then
all lines drawn from equidistant points on AD and parallel to BE will represent
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the increasing values of the speed, beginning with the instant A

.

Let the point F
bisect the line EB; draw FB parallel to BA, and GA parallel to FB, thus form-

ing a parallelogram AGFB which will be equal in area to the triangle AEB,
since the side GF bisects the side AE at the point I

;
for if the parallel lines in the

triangle AEB are extended to GI, then the sum of all the parallels contained in

the quadrilateral is equal to the sum of those contained in the triangle AEB\ for

those in the triangle IEF are equal to those contained in the triangle GIA, while

those included in the trapezium AIFB are common. Since each and every

instant of time in the time interval AB has its corresponding point on the line

AB, from which points parallels drawn in and limited by the triangle AEB
represent the increasing values of the growing velocity, and since parallels con-

tained within the rectangle represent the values of a speed which is not increas-

ing, but constant, it appears, in like manner, that the momenta assumed by the

moving body may also be represented, in the case of the accelerated motion, by

the increasing parallels of the triangle AEB, and, in the case of the uniform

motion, by the parallels of the rectangle GB. For what the momenta may lack

in the first part of the accelerated motion (the deficiency of the momenta being

represented by the parallels of the triangle AGI) is made up by the momenta

represented by the parallels of the triangle IEF.

Hence it is clear that equal spaces will be traversed in equal times by two

bodies, one of which, starting from rest, moves with a uniform acceleration,

while the momentum of the other, moving with uniform speed, is one-half its

maximum momentum under accelerated motion. Q.E.D.

5 CAVALIERI. PRINCIPLE OF CAVALIERI

Bonaventura Cavalieri (c. 1598-1647), a professor at Bologna, was a disciple of Galilei’s.

He wrote a treatise on the use of “indivisibles ” that constituted a first textbook on what we
now call integration methods. The Geometria indivisibilibus continuorum (Bologna, 1635;

2nd ed., 1653) considered areas as sums of indivisibles, the line segments of which it is

composed, and volumes as sums of plane areas. It showed how to measure plane areas and

solid volumes by comparing the indivisibles of one with the indivisibles of the other. By
taking these indivisibles parallel to each other, Cavalieri arrived at the principle that is still

called by his name. We present it in the translation by G. W. Evans, “Cavalieri’s theorem

in his own words,” American Mathematical Monthly 24 (1917), 447—451, of Cavalieri’s text

on pp. 113-145 of his book. The lettering in the text and in Fig. 1 is modernized, as the

facsimile, Fig. 2, shows.

In modern notation the principle of Cavalieri is as follows. Let the two lines x = a, x = b

together with the continuous curves y = f^x), y = f2(x) enclose an area A u and let the

same lines together with the continuous curves y = <pi(x), y = cp2 (x) enclose another area

A z . Then if for all x, a ^ x ^ b,

M*) ~ fi(x )
=

<P2(*)
-

<Pi(x)>

A
1 = I [/a(*) - f±(x)] dx = A 2

=
|

[<p2(x) - ip^x)] dx.
Ja Ja
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This theorem of Cavalieri s is still useful in the high-school teaching of the mensuration
of solids, since it makes possible a considerable amount of integration without the formal
apparatus of the calculus. The translator observed that his English version is “intended to
give, as faithfully as possible, the verbal meaning of the Latin, while not, of course, following
the prolix idiom of the time in all its ramifications. '’ This is doing some injustice to the time,
but no injustice to Cavalieri.

The Theorem . If between the same parallels any two plane figures are constructed,
and if in them, any straight lines being drawn equidistant from the parallels, the
included portions of any one of these lines are equal, the plane figures are also equal
to one another; and if between the same parallel planes any solid figures are con-
structed, and if in them, any planes being drawn equidistantfrom the parallel planes,
the included plane figures out of any one of the planes so drawn are equal, the solid
figures are likewise equal to one another.

The figures so compared let us call analogues, the solid as well as the plane
The Proof. Let any two plane figures ABC and XYZ [Fig. 1] be constructed

between the same parallels PQ, RS; and let DN, OU, be drawn parallel to the

Fig. 1

aforesaid PQ, RS; and let the portions, for example of DN, included in the
figures, namely JK, LM, be equal to each other; and again, in the line OU, let
the portions EF, OH, taken together (for the figure ABC, for example, may be
hollow within, according to the contour of FfG), be likewise equal to TV; and
let this happen in all the other lines equidistant from PQ. I say that the figures
ABC, XYZ, are equal to each other.

Let either, then, of the two figures ABC, XYZ be taken, for example ABC
itself, with the portions of the parallels PQ, RS coterminous with it, namely the
portions PA, RB, and let it be superposed upon the other figure XYZ, but so
that the lines PA, RB may fall upon AQ, CS; then either the whole figure ABC
coincides with the whole figure XYZ (and thus, since they coincide with each
other they are equal), or not; yet let there be some part which will coincide with
some part, as XMC'YThL, part of the figure ABC, with XMC'YThL, part of
the figure XYZ.
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It is manifest, moreover, if the superposition of the figures is effected in such

a way that portions of the parallels PQ, RS coterminous with our two figures

are mutually superposed, that whatever straight lines (included in the figures)

are in line remain in line; as, for example, since EF, GH are in line with TV,

when the aforesaid superposition is made they will remain in fine (namely

E'F'TH' in line with TV), for the distance of those lines EF, GH from PQ is

equal to the distance of TV from PQ; whence, no matter how many times PA
is placed over AQ, at any place, EF, GH will always remain in line 1 with TV,

which is clearly apparent not only for this but for all other lines parallel to PQ
in either figure.

In the case where part of one figure (as ABC) coincides of necessity with part

of the figure XYZ, and not with the whole, granting that the superposition be

made by such a rule as has been told, the demonstration will be as follows. For

since when any parallels are drawn to PQ, the portions of them, included in the

figures, which were in line, will still remain in line after superposition, and more-

over since they were by hypothesis equal before superposition, therefore, after

superposition the portions included in the figures will likewise be equal—as, for

example, E'F', TH' taken together will be equal to TV—therefore, if E'F'
,
TH'

do not coincide with the whole of TV, then, one part [of one] coinciding with

some part [of the other], as TH' with TH’ itself, E'F' will be equal to H'V,

E'H' being in the residuum of the figure ABC which is superposed, and H'V in

the figure XYZ upon which the other is superposed. In the same way we shall

show that to any line whatever parallel to PQ, and included in the residuum of

the superposed figure ABC (which may be LB'YTF') corresponds an equal

straight line, in line [with the former], which will be in the residuum of the figure

XYZ on which ABC is superposed; therefore, the superposition being made by

this rule, when anything of the superposed figure is left over and does not fall

upon the figure, it must be that something of the other figure must also be left

over, and have nothing superposed upon it.

Since, moreover, to each of the straight lines parallel to PQ and included in

the residuum (or residua, for there may be several residual figures) of the super-

posed figure ABC (or XB'C') there corresponds another straight line, in fine

[with the first] and included in the residuum (or residua) of the figure XYZ,
it is manifest that these residual figures, or their aggregates, are between the

same parallels; so since the residual figure LB'YTF ' 2
is between the parallels

DN, RS, likewise the residual figure (or aggregate of residual figures) of the

figure XYZ (because it has the frusta Thg, MC'Z) will be between the same

parallels DN, RS. For if it did not extend both ways to the parallels DN, RS,

as for example if it extended up to DN, but not down to RS, only as far as OU

,

then to the straight lines included in the frustum E'B' YfF'

,

and parallel to PQ,

there would not be found in the residuum of the figure XYZ (or in the aggregate

of the residua) other corresponding lines as has been proved to be unavoidable.

Therefore these residua, or their aggregates, are between the same parallels; and

the portions of the lines parallel ot PQ, RS, included therein, are equal, as we

1 Here begins the text in the facsimile. Fig. 2.

2 Here ends the text in the facsimile, Fig. 2.
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have shown above; therefore the residua are subject to the same condition as

has been assumed for ABC, XYZ; that is, they are analogues.

So let the residua be now superposed, but so that the parallels KL,CY may
fall upon the parallels LN, YS, and the part VB"Z of the frustum LB'YTF'
may coincide with the part VB"Z of the frustum MC'Z; then we shall show, as

above, that as long as there is found a residuum of one, there will be found also

a residuum of the other, and these residua, or aggregates of residua, will be

found within the same parallels. Let L'VZY'G"F" be a residuum belonging to

the figure ABC; and let MC'B"V, Thg, be residua belonging to the figure XYZ,
whose aggregate is between the same parallels as the residuum L'VZY'G"F"

,

that is, between DN, RS. If now we superpose these residua again, but so that

the parallels between which they lie be always superposed respectively, and this

is supposed to be done continually, until the whole figure ABC shall have been

superposed, I say the whole of it must coincide with XYZ; otherwise if there

were any residuum of the figure XYZ, upon which nothing is superposed, there

would be also some residuum of the figure ABC which would not have been

superposed, as we have shown above to be unavoidable; but it is granted that

the whole of ABC is superposed upon XYZ, therefore they are so superposed

upon each other that there are no residua of either, therefore they are so super-

posed that they coincide, therefore the figuresA BC,XYZ are equal to each other.

Now in the same diagram let ABC, XYZ be any two solid figures constructed

between the same parallel planes PQ, RS; and let DN, OU be any planes drawn

equidistant from the planes previously spoken of; and let the figures that lie in

the same plane and that are included in the solids be equal to each other always;

as JK equal to LM, and EF
,
GH, taken together (for a solid figure, for example

ABC, may be hollow in any way within, according to the surface FfGg), equal

to TV. I say that these solid figures are equal to each other.

For if we superpose the solid ABC, with the portions PA, RC of the planes

PQ, RS, coterminous with it, upon the solid XYZ, in such a way that the plane

PA be on the plane PQ, and the plane RC on the plane RS, we shall show (as we
did above about the portions of the lines parallel to PQ included in the plane

figures ABC, XYZ) that the figures included in the solids and lying in the same

plane will also after superposition remain in the same plane; and therefore thus

far the figures included in the superposed solids are equal—and parallel to

PQ, RS.

Then unless the entire solid coincides with the other solid entire in the first

superposition, residual solids will remain, or solids composed of residua, in either

solid, which will not be superposed upon each other. Since for example the

figures E'F', TH’ are equal to the figure TV, then when the common figure TII'

is taken away, the remaining figure E'F' will be equal to the remaining figure

H' V

;

and this will happen in any plane whatever parallel to PQ and meeting the

solids ABC, XYZ. Therefore whenever we have a residuum of one solid, we shall

always have a residuum of the other also; and it will be evident, according to the

method applied in the former part of this Proposition in the case of plane figures,

that the residua of the solids, or the aggregates of residua, will always be between

the same parallel planes (as the residua LB'YTF'
,
MC'Z, Thg are between the

same parallels DN, RS) and will be analogues.
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Now if these residua be superposed again, so that the plane DL will be placed
on the plane LN, and R Y on YS, and this is understood to be done continually,

until ABC, which is being superposed, is entirely taken, the entire solid ABC
will finally coincide with the entire solid XYZ. For when the entire solid ABC
is superposed upon XYZ, unless they coincided there would be some residuum
of one, as of the solid XYZ, therefore also some residuum of the solid XB'C'

,

or ABC, and this residuum would not be superposed; which is absurd, for it is

already assumed that the entire solid ABC is superposed on XYZ. Therefore
there will not be any residuum in these solids; therefore they will coincide;

therefore the solid figures spoken of, ABC, XYZ
,
will be equal to each other,

which was to be proved of them.

6 CAVALIERI. INTEGRATION

Cavalieri’s method consisted in comparing the indivisibles of one figure with those of

another. This was a dangerous procedure, because it was not always clear how and which
indivisibles should be compared. Then he added these indivisibles, using such expressions

as omnes lineae (o.l.) = all lines (a.l.). Summing correctly, he reached the important result

that we write

ra an+l

|

xn dx = - — - (n a positive integer).

The abbreviation o.l. formed a kind of integration symbol, like Leibniz’s use of
J,

and
then

|

dx.

Cavalieri derived the formula in his Geometry of indivisibles (see the preceding selection)

for the case n = 2, so that he did not get a new result: Archimedes had found it before him.
In later work Cavalieri found the formula for n = 3, 4, . . . , 9. We show here from his

Exercitationes geometricae sex (Bologna, 1647), Part IV, Proposition 21, how he obtained the
result for n = 3. To understand it we must know that Cavalieri first proved, in his prolix

geometric way, the equivalent of the binomial expansion for (a + b)
3

,
later also for (a + b) n

,

n a positive integer > 3. We give first a translation of the clumsy original version, then
modify it somewhat by replacing Cavalieri’s words by modern symbols. See on this subject

H. Bosmans, “Un chapitre de l’oeuvre de Cavalieri. Les propositions XVI-XXVII de
l’Exercitio quarta,” Mathesis 36 (1922), 365-373, 446^456.



CAVALIERI. INTEGRATION 6
|

215

By the time Cavalieri’s work was published, the integral of xn was known to Torricelli,

Fermat, Roberval, and possibly also to other mathematicians—each finding the result in

his own way and some already generalizing it for fractional and negative n.

Proposition 21. All cubes of the parallelogram AD [Fig. 1] are the quadruple of

all cubes of either triangles ACF or FDC. 1

All cubes of parallelogram AD are equal to a.c. of [the line NU of] triangle

ACF with a.s. of [the lines of] triangle FDC, together with three times a.l. of

triangle FDC with a.s. of [the lines of] triangle ACF. 2

1 To understand this reasoning we reproduce first in our notation how Cavalieri shows that

the area of a parallelogram AFCD is twice that of one of the triangles into which it is

divided by a diagonal FC. In Fig 1 draw NE\\BG\\AF so that HE = BM, NH = MG.
Take HE = x, NH = y, AF = a. Then x + y = a, hence 2 * + 2 2/

= 2 “ when we sum
on all parallel lines NE from AF to CD, for to every NH there corresponds one and only

one MG. But since HE = BM, 2 * = 2 y\ hence 2 * = i 2 Here 2 x is the area of

triangle FCD, 2 o that of the parallelogram. (If we introduce our present symbol A*, we
can write (x + y) Ax = a Ax, and thus we obtain 2 x Ax = £2 « Ax = \a 2 Ax = \a, which

shows that Cavalieri’s formula is equivalent to Jq x dx = Jo2
.) Similarly, we obtain from

(x + y)
2 = a:

To find 2 XV we could write x = + z, y = — z. Then

From similar triangles we derive 2 z2 = i 2 x2 - Hence

2 ^ x2 + i ^ ^ = 2 “2>

or

2 We follow the text step by step in modern notation. In Fig. 1 we take AF = CD = a,

HE — BM = x, NH = y, x + y = a. Then Prop. 21 is that 2 <*
3 = 4 2 £3 = 4 2 V

3
- The

next paragraph states that

(a.l. = all lines, a.s. = all squares, a.c. = all cubes; “together with” means plus). Then

2 (
x + y'l

3
: 2 + yS,x2 ~ 2 + y )

2
: 2 x2 = 3

:

2 (
x + y)

3 = 3 2 + yS>Xt

Subtracting 3 2 x2
y from both sides, we get
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Now a.c. ofAD are the product of a.l. AD by a.s. AD, and this is to the prod-
uct of a.l. of AD by a.s. of triangle FDC as a.s. of the parallelogram AD is to
a.s. of triangle FDC (because their altitude is the same, namely a.l. AD), and
this ratio is 3. Hence a.c. of AD are equal to three times the product of a.l. of
AD by a.s. of triangle FDC, and this is equal to the product of a.l. of triangle
ACF by a.s. of triangle FDC plus the product of a.l. of triangle FDC by a.s. of
the same triangle FDC, and this is equal to a.c. of triangle FDC. Hence a.c. of
AD will be three times the sum of a.c. of triangle FDC and the product of a.l.

of triangle ACF by a.s. of triangle FDC.
If now we resolve a.c. ofAD into its parts, then we shall get a.c. of ACF plus

a.c. of FDC plus three times the product of a.l. of triangle FDC by a.s. of
triangle ACF plus three times the product of a.l. of triangle ACF by a.s. of
triangle FDC. But three times the product of a.l. oftriangleACF by a.s. oftriangle
FDC is three times the same product. If we take it away three times of what
we take away remains. So that a.c. of ACF plus a.c. of FDC and three times
the product of a.l. of triangle FDC by a.s. of triangle FAC are three times a.c.

of triangle FDC. Now a.c. of triangle ACF plus a.c. of triangle FCD are twice
a.c. of triangle FCD, since a.c. of triangle ACF will be equal to a.c. of triangle
FCD.
Hence three times the product of a.l. of triangle ACF by a.s. of triangle FCD

together with three times the product of a.l. of triangle FCD by a.s. of triangle

FAC and a.c. of the triangles ACF, FDC, that is a.c. of parallelogram AD, are
equal to the quadruple of a.c. of triangle FDC (or triangle FAC).

This is so, since the product of a.l. ofACF by a.s. of FDC is equal to the prod-
uct of a.l. of FDC by a.s. of ACF, and this is so because of the equality of the
lines and their squares in those triangles FDC, ACF which alternately corre-

spond. Hence three times the product of a.l. of ACF with a.s. of FDC are equal
to three times the product of a.l. of FDC and a.s. of ACF. This makes the proof
clear. 3

3 This reasoning can be much shortened in the following way. In order to find 2 *3 we
can proceed as before:

2 <x + y)
3 = 2 2 x° + 6 2 x2y = 2 °3

-

But

2 o3 = a ^ «2 = «(2 2 *2 + 2 2 xy
)
=

§ 2 ®3 + 2a 2 xy

= i^ “3 + 2 2 (* + yS,xy = 1

2

“3 + 4 2 x2y '

Hence

2 x*y = r> ^ <,S
' and 2*3 = i2“3

-

We can in a similar way climb from x3 to n > 3, to prove that

y xn = — - an,^ n + 1
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Proposition 22 proves that 2 = i 2 “4
- Proposition 23 is as follows:

Proposition 23. In any parallelogram such as BD [Fig. 2] with base CD we
draw an arbitrary parallel EF to CD and the diagonal AC, intersecting EF in 0.

Then DA : A F = (CD or EF) :FG. We call .40 the prime diagonal. Then we
construct point H on EF such that DA 2

: AF2 = EF:FH, and so on all

parallels to CD, so that all lines like this HF end on a curve CHA

.

In a similar

way we construct a curve CIA, where DA 3
: AF3 = EF : FI, a curve CLA such

that DA i
: AF4 = EF :FL, etc. We call CIIA the second diagonal, CIA the

third, CLA the fourth, etc., and similarly AGCD the first diagonal space of

parallelogram BD, the trilinear figure AHCD the second, AICD the third,

ALCD the fourth, etc. Then I say that parallelogram BD is twice the first,

three times the second, four times the third, five times the fourth space, etc.
4

C D

Proposition 24. When a parallelogram and a parabola have the same base and
the same axis, and are rotated about the base, then the cylinder generated by

which is equivalent to the integral

xn dx =
n + 1

We thus see how closely Cavalieri’s method resembles our integration of polynomials. If
we do not sum over all x, but only over the integers, we obtain (in our notation)

1»+ 2" + ••• + o" 1hm — = la an integer),
a- oo an +

1

n + 1
' 6 "

the generalization for integer n > 2 of the formula implied in Archimedes’ quadrature of the
parabola. For further information on this formula see G. Kowalewski, Die klassischen
Probleme der Analysis des Unendlichen (Engelmann, Leipzig, 1910; 2nd ed., 1920), 44, 49,

where this limit is named after Wallis. It is also implicit in the work of Roberval and Fermat
around 1636-37.

4 We give Cavalieri’s demonstration in modern notation. We put CE = a, DA = b,

AF = z, FO = x, FH = xlt FI = x2 ,
FL = x3 ,

OE - y, HE = yx and the area of paral-
lelogram BD = 2 a — P. Then the demonstration is as follows:

Parallelogram BD is twice the first space ACD, P = £ a = 2 2 as has been shown in

previous propositions. Since b2 : z2 = a2
: x2 = a: x 1 , we find that a2

: 2 x2 = a

:

2 *i, and,
since according to a previous proposition 2 * 2 = i 2 “2 = we conclude that a2

: \aP =
u:2>i, °r P = 3 2 xx ; in other words, parallelogram BD is three times the space AHCD.
In the same way we can show from a3

: x3 = a : x2 and 2 *3 = i 2 “3 = i“
2P that P =

4 2 ®a. °r parallelogram BD is four times the space AICD. And so on.
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the parallelogram is to the solid generated by the parabola (which Kepler called

the parabolic spindle) as 15 :8.
6

Cavalieri s summation of lines into areas and of areas into volumes can easily trip the
unwary, as we have observed. Cavalieri was well aware of it, but expected that the dif-

ficulties would be removed in due time, that to cut the Gordian knot could be left to some
later Alexander, as he put it. The correspondence of Cavalieri with his younger friend,

Evangelista Torricelli (1608-1647), revealed some difficulties. For instance, in a letter from
Cavalieri to Torricelli 6 the following paradox appears, paraphrased here in a modernized
language

:

Take a nonisosceles triangle ABC, of altitude AD. Draw an arbitrary line PQ\\BC, and
draw PR and QS\\AD. Then PR = QS, hence T PR = 2 QS. But 2 PR, according to the
theory of indivisibles, is equal to the area of /SABD, and 2 QS to that ofAACD. These
areas are, therefore, both equal and unequal.

A

5 We use the figure of the previous propositions in which CHA is a parabolic curve with
vertex A so that AHCB is half a parabolic area. Let AB be the axis, and let parallelogram
BD together with the half-parabolic area AHCB be rotated about the half-base BC. Then
BD generates a cylinder, and AHCB half a parabolic spindle. We must prove that the
cylinder is to the half-spindle (and twice the cylinder to the whole spindle) as 15:8. For this
purpose we start as in the previous proposition, with

a : x 1 = b 2
: x2 = a2

: x2
, so that a2

: x\ = a4
: x 4

.

Now

2 «2
: 2 axi = 2 « : 2* 1 = 3:1 = 15 :

5

'

But

2 “*1 = 2 ^Xi + yd 2 Xi = 2 x* + 2 Xiyi = a 2 a2>

and since

2 a2 2 *i = 2

“

4

:

2 3:4 = 5 : ls or 2^ = *2“2
-

we conclude that

2^i = a 2°2
’ or 2 2 Xiyi = * 2

°

2
’

and

2 x\ + 2 2 xiyi = iV 2 “2
> °r 2 y* = ^ 2 “2

'

The solid generated by BD is to the solid generated by AHCB as 2 o2
is to 2 yi, and

therefore as 15:8.
6 E. Torricelli, Opere (Montanari, Faenza, 1919), I, 170-171.
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Cavalieri solves this paradox by considering the lines PR, QS as threads of a fabric. If

AB = 2AC, and if AC contains 100 points, then AB contains 200 points, and hence there

are 100 threads in ADC against 200 threads in ADB. He here exchanges his indivisibles of

one dimension for infinitesimals (or finite differences) of two dimensions, an important step

which he did not consistently follow up. It is exactly this type of pitfall that Leibniz avoided

when he changed his original notation
J

= omnes linae y into
J
ydx. See on this subject

H. Bosnians, “Sur une contradiction reprochee a la theorie des ‘indivisibles’ de Cavalieri,”

Annales de la Societe Scientifique de Bruxelle 42 (1922), 82-89; E. Bortolotti, “I progressi

del metodo infinitesimale nell’opera geometrica di Evangelista Torricelli,” Periodico de

Matematiche [4] 8 (1928), 19-59.

7 FERMAT. INTEGRATION

Many mathematicians tried to generalize Cavalieri’s integral
J“

xn dx = an + 1j(n + 1),

n a positive integer, to n fractional or negative. Pierre Fermat and Evangelista Torricelli

accomplished this about 1640 by an investigation of the area between an arc of the “hyper-

bola
’

’ xmy
n = k (m,n positive integers)

,
an ordinate and an asymptote. Their approach was

purely geometric. Fermat, of whose work on number theory we gave examples in our section

on Arithmetic, solved the problem in the following way. We take our text from Oeuvres,

I (1891), 255-259; III (1896), 216-219.

ON THE TRANSFORMATION AND SIMPLIFICATION OF THE EQUATIONS
OF LOCI

APPLICATION TO THE COMPARISON OF ALL FORMS OF CURVILINEAR AREAS, EITHER

AMONG THEMSELVES, OR WITH RECTILINEAR ONES

APPLICATIONS OF THE GEOMETRIC PROGRESSION TO THE QUADRATURE 1 OF

PARABOLAS AND INFINITE HYPERBOLAS

Archimedes did not employ geometric progressions except for the quadrature

of the parabola; in comparing various quantities he restricted himself to arith-

metic progressions. Was this because he found that the geometric progression

was less suitable for the quadrature ? Was it because the particular device that

he used to square the parabola by this progression can only with difficulty be

applied to other cases? Whatever the reason may be, I have recognized and

proved that this progression is very useful for quadratures, and I am willing to

present to modern mathematicians my invention which permits us to square,

by a method absolutely similar, parabolas as well as hyperbolas.

The entire method is based on a well-known property of the geometric pro-

gression, namely the following theorem:

1 Fermat uses the Greek term tetragonizein for “to perform a quadrature,” a practice not
uncommon in the seventeenth century.
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Given a geometric progression the terms of which decrease indefinitely, the dif-

ference between two consecutive terms of this progression is to the smaller of them as

the greater one is to the sum of all following terms. 2

This established, let us discuss first the quadrature of hyperbolas

:

I define hyperbolas as curves going to infinity, which, like DSEF [Fig. 1],

have the following property. Let BA and AC be asymptotes which may be
extended indefinitely; let us draw parallel to the asymptotes any lines EG, HI,
NO, MP, RS, etc. We shall then always have the same ratio between a given
power of AH and the same power of AG on one side, and a power of EG (the

same as or different from the preceding) and the same power of HI on the other.

I mean by powers not only squares, cubes, fourth powers, etc., the exponents of
which are 2, 3, 4, etc., but also simple roots the exponent of which is unity.

3

I say that all these infinite hyperbolas except the one of Apollonius, i or the first,

may be squared by the method of geometric progression according to a uniform and
general procedure.

Let us consider, for example, the hyperbolas the property of which is defined

by the relations AH2/AG2 = EGjHI and A02jAH2 = HI/NO, etc. I say that
the indefinite area which has for base EG and which is bounded on the one side

by the curve ES and on the other side by the infinite asymptote GOB is equal
to a certain rectilinear area.

Let us consider the terms of an indefinitely decreasing geometric progression;
let AG be the first term, AH the second, AO the third, etc. Let us suppose that
those terms are close enough to each other that following the method of Archi-
medes we could adequate

[
adegaler

] according to Diophantus, 5 that is, equate
approximately the rectilinear parallelogram GE x GH and the general quadri-

lateral GHIE; in addition we shall suppose that the first intervals GII, HO, OM,
etc. of the consecutive terms are sufficiently equal that we can easily employ
Archimedes’ method of exhaustion by circumscribed and inscribed polygons.
It is enough to make this remark once and we do not need to repeat it and insist

constantly upon a device well known to mathematicians.

2 This is Fermat s way of expressing that the sum of a convergent series a -f- ar + ar2

+ •
• + arn + • • • = a/( 1 — r).

3 This may mean “exponents that are unit fractions.”
4 The hyperbola of Apollonius is the ordinary hyperbola, of which, if its equation is

xy = a2
, the integral J“ y dx diverges.

The term adequatio is a Latin translation of the Greek term parisotes, by which Dio-
phantus denoted an approximation to a certain number as closely as possible. See T. L.
Heath, Manual of Greek mathematics (Clarendon Press, Oxford, 1931), 493. Fermat uses the
term to denote what we call a limiting process.
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Now, since AG/AH = AH/AO = AO/AM, we have also AG/AH = GHjHO =
HOjOM, for the intervals. But for the parallelograms,

EG x GH HI x HO
HI x HO

-
ON x OM'

Indeed, the ratio EG x GHjHI x HO of the parallelograms consists of the

ratios EG\HI and GHjHO-, but, as indicated, GHjHO = AG/AH; therefore, the

ratio EG x GHjHI x HO can be decomposed into the ratios EGjHI and

AG/AH. On the other hand, by construction, EGjHI = AH2
/AG2 or AO/AG,

because of the proportionality of the terms; therefore, the ratio GE x GH

j

HI x HO is decomposed into the ratios AO/AG and AGjGH; now AOjAH is

decomposed into the same ratios; we find consequently for the ratio of the

parallelograms: EG x GHjHI x HO = AO/AH — AH
I
AG.

Similarly we prove that HI x HOjNO x MO = AO/AH.
But the lines AO, AH, AG, which form the ratios of the parallelograms, define

by their construction a geometric progression; hence the infinitely many paral-

lelograms EG x GH, HI x HO, NO x OM, etc., will form a geometric pro-

gression, the ratio of which will be AH
I
AG. Consequently, according to the basic

theorem of our method, GH, the difference of two consecutive terms, will be to

the smaller term AG as the first term of the progression, namely, the parallelo-

gram GE x GH, to the sum of all the other parallelograms in infinite number.

According to the adequation of Archimedes, this sum is the infinite figure

bounded by HI, the asymptote HR, and the infinitely extended curve

IND.
Now if we multiply the two terms by EG we obtain GHjAG = EG x GHj

EG x AG; here EG x GH is to the infinite area the base of which is HI as

EG x GH is to EG x AG. Therefore, the parallelogram EG x AG, which is a

given rectilinear area, is adequated to the said figure; if we add on both sides the

parallelogram EG x GH, which, because of infinite subdivisions, will vanish

and will be reduced to nothing, we reach a conclusion that would be easy to

confirm by a more lengthy proof carried out in the manner of Archimedes,

namely, that for this kind of hyperbola the parallelogram AE is equivalent to

the area bounded by the base EG, the asymptote GR, and the curve ED in-

finitely extended.

It is not difficult to extend this idea to all the hyperbolas defined above

except the one that has been indicated.

Fermat then extends his method to parabolas. His reasoning can be translated as

follows.

Divide the interval 0 < x < a into parts by the points x1 = a, x2 = ar, x3 = ar2
,
...,»•< 1,

which are separated by the intervals l
x — a(l — r), l2 = ar( 1 — r), l3 = ar2

( 1
— r), .... If

y = xn (n = pjq, p, q ^ 0) is the equation of the “hyperbola” or “parabola,” then the
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values of y corresponding to xlt x2 , x3 , . . . are yx = an
, y2 = anrn

, y3 = anr2n , .... Then the
sum S of the rectangles l1x1 + l2x2 + l3x3 + • • is

S — a(l — r)an + ar{ 1 — r)anrn + ar2
( 1
— r)anr2n +

= (1 - r)an+1
( 1 + rn + 1 + r2n + 2 +...)=

^

1

~J+1 an + 1
.

When r = sq (s < 1) and n / - 1, then

l'
a 1 — r 1 qQ
xn dx = an + 1 lim-

;rTT = a’
1 + 1 lim- —

Jo 1 — rn + 1
1 _ sp+3

qan +

1

an+1

p + q n + 1

As we see, this procedure holds for n positive and negative, but it fails for n = — 1

.

This method approaches our modern method of limits; it uses the concept of the limit of
an infinite geometric series.

8 FERMAT. MAXIMA AND MINIMA
Modern textbooks on calculus take up first the dilferential and then the integral calculus. It
may therefore come as a surprise to find that up to the middle of the seventeenth century
the whole theory of infinitesimals concentrated on the computation of areas, volumes, and
centers of gravity, that is, on what we now call the integral calculus. Tangent constructions
were, until that period, based on the property that the tangent has only one point in
common with the curve, as we can see in Euclid or Apollonius. Archimedes, in his book on
spirals, found tangents by a method that seems to have been inspired by kinematic con-
siderations. Even Torricelli, when determining the tangent at a point of the “hyperbola”
xmy

n = k, still used the ancient method (A. Agostini, “II metodo delle tangenti fondato
sopra la dottrina dei moti nelle opere di Torricelli,” Periodico di matematica \4\ 28 (1950),
141-158), and Descartes sought the normal prior to the tangent, and found it in some cases
of algebraic curves by asking for double roots of a certain equation that expresses the
abscissa of the intersections of the curve with a circle.

The beginning of the differential calculus, in which the tangent appears as the limit of
a secant, can be studied in considerations concerning maxima and minima, as in Kepler’s
Nova stereometria doliorum vinariorum (Linz, 1615; see Selection IV.2). Here we read that
“near a maximum the decrements on both sides are in the beginning only imperceptible”
(decrementa habet insitio insensibilia; Opere, IV (1863), 612).

With Fermat we obtain an algorithm based on this fact. To understand his approach and
its subsequent development into the method of the “characteristic triangle” (dx, dy, ds) we
must take notice of the fact that Fermat and Descartes were among the first to apply the
new algebra developed by Cardan, Bombelli, and Viete to the geometry of the ancients.
This was, as we have seen, the beginning of the coordinate method. Descartes published his
method in 1637, but Fermat’s discovery was known only through his correspondence until

1679, the year of the publication of his works. Here is Fermat’s approach, from his Oeuvres,
III (1896), 121-123. It is followed by a paper in which he applied his method to the finding
of a center of gravity {Ibid., 124-126).
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(1) ON A METHOD FOR THE EVALUATION OF MAXIMA AND MINIMA1

The whole theory of evaluation of maxima and minima presupposes two un-

known quantities and the following rule

:

Let a be any unknown of the problem (which is in one, two, or three dimen-

sions, depending on the formulation of the problem). Let us indicate the maxi-

mum or minimum by a in terms which could be of any degree. We shall now

replace the original unknown a by a + e and we shall express thus the maximum
or minimum quantity in terms of a and e involving any degree. We shall

adequate [adegaler], to use Diophantus’ term, 2 the two expressions of the

maximum or minimum quantity and we shall take out their common terms.

Now it turns out that both sides will contain terms in e or its powers. We shall

divide all terms by e, or by a higher power of e, so that e will be completely

removed from at least one of the terms. We suppress then all the terms in which

e or one of its powers will still appear, and we shall equate the others; or, if one

of the expressions vanishes, we shall equate, which is the same thing, the positive

and negative terms. The solution of this last equation will yield the value of a,

which will lead to the maximum or minimum, by using again the original

expression.

Here is an example:

To divide the segment AC [Fig. 1] at E so that AE x EC may he a maximum.

Fig-! A E C

We write AC = b
;
let a be one of the segments, so that the other will be b — a,

and the product, the maximum of which is to be found, will be ba — a2
. Let now

a + e be the first segment of 6; the second will be b — a — e, and the product of

the segments, ba — a2 + be — 2ae — e
2

;
this must be adequated with the pre-

ceding: ba — a2
. Suppressing common terms: be ~ 2ae + e. Suppressing e:

b = 2a. 3 To solve the problem we must consequently take the half of b.

We can hardly expect a more general method.

ON THE TANGENTS OF CURVES

We use the preceding method in order to find the tangent at a given point of a

curve.

Let us consider, for example, the parabola BDN [Fig. 2] with vertex D and

of diameter DC
;
let £ be a point on it at which the line BE is to be drawn tan-

gent to the parabola and intersecting the diameter at E.

1 This paper was sent by Fermat to Father Marin Mersenne, who forwarded it to Des-

cartes. Descartes received it in January 1638. It became the subject of a polemic discussion

between him and Fermat (Oeuvres ,
I, 133). On Mersenne, see Selection 1.6, note 1.

2 See Selection IV.7, note 5.

3 Our notation is modern. For instance, where we have written (following the French

translation in Oeuvres, 111,122) be ~ 2ae + e2
,
Fermat wrote: B in E adaequabitur A in E

bis + Eq
(
Eq standing for E quadratum). The symbol ~ is used for “adequates.”
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We choose on the segment BE a point 0 at which we draw the ordinate 01
;

also we construct the ordinate BC of the point B. We have then: CDjDI >
BCz/OI2

,
since the point 0 is exterior to the parabola. But BC2j012 = CE2\1E2

,

in view of the similarity of triangles. Hence CDjDI > CE2\1E2
.

Now the point B is given, consequently the ordinate BC, consequently the
point C, hence also CD. Let CD = d be this given quantity. Put CE = a and
Cl = e; we obtain

d a2 4

d — e
>

a2 + e2 — 2ae

Removing the fractions:

da2 + de2 — 2dae > da2 — a2
e.

Let us then adequate, following the preceding method; by taking out the
common terms we find:

de2 — 2dae ~ — a2
e,

or, which is the same,

de2 + a2
e 2dae.

Let us divide all terms by e:

de + a2 ~ 2da.

On taking out de, there remains a2 = 2da, consequently a = 2d.

Thus we have proved that CE is the double ofCD—which is the result.

This method never fails and could be extended to a number of beautiful
problems; with its aid, we have found the centers of gravity of figures bounded
by straight lines or curves, as well as those of solids, and a number of other
results which we may treat elsewhere if we have time to do so.

I have previously discussed at length with M. de Roberval 5 the quadrature
of areas bounded by curves and straight lines as well as the ratio that the solids
which they generate have to the cones of the same base and the same height.

4 Fermat wrote: D ad D — E habebit majorem proportionem quam Aq. ad Aq. +
Eq. — A in E bis (Z> will have to D — E a larger ratio than A 2 to A 2 + E2 - 2AE).

5 See the letters from Fermat to Roberval, written in 1636 (Oeuvres, III, 292-294, 296-
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Now follows the second illustration of Fermat’s “e-method,” where Fermat’s e =

Newton’s o = Leibniz’ dx. 6

(2) CENTER OF GRAVITY OF PARABOLOID OF REVOLUTION, USING
THE SAME METHOD7

Let CBA V (Fig. 3) be a paraboloid of revolution, having for its axis I

A

and for

its base a circle of diameter Cl V. Let us find its center of gravity by using the

same method which we applied for maxima and minima and for the tangents of

curves; let us illustrate, with new examples and with new and brilliant applica-

tions of this method, how wrong those are who believe that it may fail.

In order to carry out this analysis, we write IA = b. Let 0 be the center of

gravity, and a the unknown length of the segment AO; we intersect the axis I

A

by any plane BN and put IN = e, so that NA = b — e.

It is clear that in this figure and in similar ones (parabolas and paraboloids)

the centers of gravity of segments cut off by parallels to the base divide the axis

in a constant proportion (indeed, the argument of Archimedes can be extended

by similar reasoning from the case of a parabola to all parabolas and paraboloids

of revolution 8
). Then the center of gravity of the segment of which NA is the

axis and BN the radius of the base will divide HiV at a point E such that

NA/AE = IA)AO, or, in formula, 6/a = (6 — e)/AE.

6 The gist of this method is that we change the variable x in f(x) to x + e, e small. Since

f{x) is stationary near a maximum or minimum (Kepler’s remark), f(x + e) — f(x) goes to

zero faster than e does. Hence, if we divide by e, we obtain an expression that yields the

required values for x if we let e be zero. The legitimacy of this procedure remained, as we
shall see, a subject of sharp controversy for many years. Now we see in it a first approach

to the modern formula: f'(x) = lim ^X
, introduced by Cauchy (1820-21).

e-o e

7 This paper seems to have been sent in a letter to Mersenne written in April 1638, for

transmission to Roberval. Mersenne reported its contents to Descartes. Fermat used the

term “parabolic conoid” for what we call “paraboloid of revolution.”
8 “All parabolas” means “parabolas of higher order,” y = kxn

, n > 2. The reference is to

Archimedes’ On floating bodies, II, Prop. 2 and following; see T. L. Heath, The works of

Archimedes (Cambridge University Press, Cambridge, England, 1897; reprint, Dover, New
York), 264ff.
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The portion of the axis will then be AE = (ba - ae)jb and the interval be-
tween the two centers of gravity, OE = ae/6.

Let M be the center of gravity of the remaining part CBRV; it must neces-
sarily fall between the points N, I, inside the figure, in view of Archimedes’
postulate 9 in On the equilibrium of planes

, since CBRV is a figure completely
concave in the same direction. 9

But

Part CBRV OE
Part BAR ~ OM’

since 0 is the center of gravity of the whole figure CA V and E and M are those
of the parts.

Now in the paraboloid of Archimedes,

Part CA V IA 2
b2

Part BAR ~ NA 2 ~ b2 + e2 - 2be'

hence by dividing,

Part CBRV _ 2be — e2

Part BAR ~
b2 + e

2 - 2be'

But we have proved that

Then in formulas,

hence

Part CBR V OE
Part BAR ~ OM

2be — e
2

_ OE (= ae/b)

b2 + e
2 - 2be OM ’

OM b2ae + ae3 — 2bae2

2b2a — be2

From what has been established we see that the point M falls between points
N and I

,
thus OM < 01; now, in formula, 01 = b — a. The question is then

prepared from our method, and we may write

b -
b2ae + ae3 — 2bae2

2b2e — be2

Multiplying both sides by the denominator and dividing by e:

2b3 — 2

b

2a — b2e + bae ~ b2a + ae2 — 2bae.

9 This is postulate 7 in the modern Heiberg edition, and is translated in Heath, p. 190, as
follows: “In any figure whose perimeter is concave in (one and) the same direction the center
of gravity must be within the figure.” (On the term “concave in the same direction ” see
Heath, p. 2.)
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Since there are no common terms, let us take out those in which e occurs and

let us equate the others:

2b3 — 2b2a — b2a, hence 3a = 2b.

Consequently

IA _ 3 AO _ 2

AO~2’ and
01 ~ V

and this was to be proved. 10

The same method applies to the centers of gravity of all the parabolas ad

infinitum as well as those of paraboloids of revolution. I do not have time to

indicate, for example, how to look for the center of gravity in our paraboloid

obtained by revolution about the ordinate; 11
it will be sufficient to say that, in

this conoid, the center of gravity divides the axis into two segments in the ratio

11/5.

9 TORRICELLI. VOLUME OF AN INFINITE SOLID

Evangelista Torricelli (1608-1647) succeeded Galilei at Florence as mathematician to the

grand duke of Tuscany. He was well acquainted with the works of Archimedes, Galilei, and

Cavalieri, and corresponded with Mersenne, Roberval, and other mathematicians. He
computed many areas, volumes, and tangents, discussed the cycloid, performed what we
now see as partial integration, and had an idea of the inverse character of tangent and area

problems. He was aware of the logical difficulties in the method of indivisibles (see Selection

IV.6). Torricelli is best known as a physicist (we speak of the “vacuum of Torricelli ” in the

mercury barometer), but his Opere (ed. G. Loria and G. Vassura, 3 vols.; Montanari, Faenza,

1919) show his ingenuity also in mathematics. From the Opere his manuscript “De infinitis

spiralibus” (c. 1646) has been republished (with improved text) with an Italian translation

by E. Carruccio (Domus Galilaeana, Pisa, 1955). Our selection is from De solido hyperbolico

acuto (c. 1643), not published until 1919 in the Opere, vol. I, part 1, pp. 191-221. Here we
see how he integrated, by a purely geometric method, an integral with an infinite range of

integration, but yet finite, something quite remarkable in those days. The method used is

that of indivisibles, in this case formed by circles in parallel planes.

ON THE ACUTE HYPERBOLIC SOLID

Consider a hyperbola of which the asymptotes AB, AC enclose a right angle

[Fig. 1], If we rotate this figure about the axis AB, we create what we shall call

10 These relations were known to Archimedes (see note 8). But Fermat solved this problem
on centers of gravity, hence a problem in the integral calculus, with what we might call an
application of the principle of virtual variations.

11 Here ACI of Fig. 3 is rotated about Cl.
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an acute hyperbolic solid, which is infinitely long in the direction of B. Yet this

solid is finite. It is clear that there are contained within this acute solid rectangles
through the axis AB, such as DEFG. I claim that such a rectangle is equal to

the square of the semiaxis of the hyperbola. 1

We draw from A, the center of the hyperbola, the semiaxis AH, which bisects

the angle BAC. This gives us the rectangle AIHC, which is certainly a square
(it is a rectangle and the angle at A is bisected by the axis AH). Therefore the
square of AH is twice the square AIHC, or twice the rectangle A F

.

and there-

fore equal to the rectangle DEFG, as claimed. 2

Lemma 2. All cylinders described within the acute hyperbolic solid and con-

structed about the common axis are isoperimetric (I always mean without their

bases). Consider the acute solid with axis AB [Fig. 2] and visualize within it the
arbitrary cylinders CDEF, GHLI, drawn about the common axis AB. The
rectangles through the axes CE

,
GL are equal and so the curved surfaces of

the cylinders will be equal. QJE.D. 3

Lemma 3. All isoperimetric cylinders (for instance, those that are drawn
within the acute hyperbolic solid) are to each other as the diameters of their

bases. Indeed, in Fig. 2, the rectangles AE, AL are equal, hence FE-.IL =
AI : A F. The cylinder CE has to cylinder GL a ratio composed ofA F2

: AI2 and
of FE : IL, or of FA : IA, or of FA 2

: AI times AF. The cylinders CE, GL are

therefore to each other as FA 2
is to AI times AF, and thus as line FA is to

line AI. Q.E.D. 4

Lemma 4. Let ABC [Fig. 3] be an acute body with axis 1JB, D the center of

the hyperbola (where the asymptotes meet), and DF the axis of the hyperbola.

1 Torricelli speaks of the latus versum where we speak of the real axis. The term latus
vermin, or latus transversum, is a translation of a Greek term used by Apollonius; see T. L.
Heath, Manual of Greek mathematics (Clarendon Press, Oxford, 1931), 359. In the present
case, taking the rectangular asymptotes as X- and Y-axes (AB the axis of positive Y), the
equation of the hyperbola is xy = £a2

, if the length of the latus versum is 2a.
2 The theorem used is xy = const., which Torricelli takes (as he remarks in the margin)

from Apollonius Conics , II, Prop. 12; see T. L. Heath, Apollonius of Perga (Cambridge
University Press, Cambridge, England, 1896).

3 Here Torricelli quotes Archimedes, On the square and cylinder, I, Prop. 6; see T. L. Heath,
The works of Archimedes (Cambridge University Press, Cambridge, England, 1897; reprint
Dover, New York).

4 This reasoning seems rather clumsy to us, since we see immediately that xj

y

x : x\y2 =
x 1 : x2 ,

when x1 y1 = x2y2 (= const.). However, to restate this reasoning in the geometric
form usual in the seventeenth century (comparing and transforming parallelepipeds) would
take as much space as Torricelli needs. The phrase “composed ofAP2

-. AI2 and of FE : IL”
means (AF2

: AI2
) x (FE-.IL). The text has IA -. AF, which should be AF : IA.
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B

Fig. 3
A G D L C

We construct the sphere AEFC with center D and radius DF. This is the largest

sphere with center D that can be described in the acute body. We take an
arbitrary cylinder contained in the acute body, say OIHL. I claim that the

surface of cylinder GH is one-fourth that of the sphere AEFC.
Indeed, since the rectangle GH through the axis of the cylinder is equal to

DF2
,
hence to the circle AEFC, therefore this cylindrical surface GIHL = \

the surface of the sphere AEFC, of which the great circle AEFG is also one-

fourth.

Lemma 5. The surface of any cylinder GHIL described in the acute solid (the

surface without bases) is equal to the circle of radius DF, which is the semiaxis,

or half the latus versum of the hyperbola, for this is proved in the demonstration

of the preceding lemma.

Theorem. An acute hyperbolic solid, infinitely long, cut by a plane [per-

pendicular] to the axis, together with the cylinder of the same base, is equal to

that right cylinder of which the base is the latus versum (that is, the axis) of the

hyperbola, and of which the altitude is equal to the radius of the basis of this

acute body.

Consider a hyperbola of which the asymptotes AB, AC [Fig. 4] enclose a

right angle. We draw from an arbitrary point D of the hyperbola a line DC
parallel to AB, and DP parallel to AC. Then the whole figure is rotated about

AB as axis, so that the acute hyperbolic solid EBD is formed together with a

cylinder FEDC with the same base. We extend BA to H, so that AH is equal to

the entire axis, that is, the latus versum of the hyperbola. And on the diameter

AH we imagine a circle [in the plane] constructed perpendicular to the asymp-

tote AC, and over the base AH we conceive a right cylinder ACGH of altitude

B

Fig. 4
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A.C, which is the radius of the base of the acute solid. I claim that the whole
body FEBDG, though long without end, yet is equal to the cylinder ACGH.
We select on the line AC an arbitrary point I and we form the cylindrical

surface ONLI inscribed in the acute solid about the axis AB, and likewise the
circle IM on the cylinder ACGH parallel to the base AH. Then we have, accord-
ing to our lemma: (cylindrical surface ONLI) is to (circle IM) as (rectangle OL
through the axis) is to (square of the radius of circle OM), hence as (rectangle
OL) is to (square of the semiaxis of the hyperbola).

And this will always be true no matter where we take point I. Hence all

cylindrical surfaces together, that is, the acute solid EBD itself, plus the cylin-

der of the base FEDC, will be equal to all the circles together, that is, to the
cylinder ACGH. Q.E.D. 5

Scholium. It might seem incredible that, though this body has an infini te

length, yet none of those cylindrical surfaces which we have considered has
infinite length. Each of them is limited, as is obvious to anybody who is even
moderately familiar with the theory of conics.

The truth of the preceding theorem is sufficiently clear in itself, and it is, I

think, sufficiently confirmed by the examples at the beginning of this paper.
However, I shall, in order to satisfy in this also the reader who has his doubts
about the indivisibles, repeat the same demonstration at the end of this work,
in the accustomed way of demonstration as used by the ancient geometers, a
way longer, but to me therefore not necessarily safer. 6

But before we do this, first something else. Since we have given demonstra-
tions about that acute solid of which the asymptotes of the generating hyperbola
form a right angle, we shall here in passing state without demonstration to which
figures the acute solids are equal, when the asymptotes are at an obtuse, or an
acute, angle.

We omit the proofs to avoid ballast; the industrious reader will be able to
supply them with little effort.

Let a hyperbola be given of which the asymptotes AB. AC form an obtuse
angle. Revolve the figure around the axis AB. Then we will obtain an acute
solid, infinitely long toward B, which we cut by a plane DE perpendicular to
the axis. Then [Fig. 5] the acute body DBE is equal to the cylinder DILE plus
the cone IAL ,

7 In Fig. 6, where the intersecting plane is DE, the whole acute
solid that stands on the circle DE minus the cone OA V is equal to the cylinder

6 The reasoning amounts to the evaluation of
Jg 2my dx = ua2 dx = na2

c, where
OC = c. The fact that astonished Torricelli, that the infinite extent of the solid does not
imply infinite volume, can be expressed in our language by saying that J” dy\y2 converges.

6 The second part of the paper is entitled “On the dimension of the acute hyperbolic
solid according to the methods of the ancients.” Torricelli says that because of the infinite
extent of the solid it is impossible to comprehend it between inscribed and circumscribed
solids. Yet he had been able to find a proof with Archimedian methods, and, so he said, had
Roberval. The proof takes much more space than that with indivisibles.

7 If we take AB as the positive Y-axis and the X-axis perpendicular to AB at A, then the
equation of the hyperbola is mx2 — xy + a2 = 0, where y = mx is the equation of the
asymptote AL. Then, if to = -p, and DE = 2c, solid DBE = 2n j

c

0 x(y - y0 )
dx, where

-pc2 - cy0 + a2 = 0, or solid DBE = w(a2c + \pc3
). The other theorems of Torricelli

can be verified in a similar way.
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IE taken together with the cone IAC. Let us now assume that the asymptotes
meet at an acute angle, and let plane CD be as in Fig. 7. Then the acute solid

CHD together with the cone EAI will be equal to the cylinder CEDI. And in

Fig. 8 the whole acute solid consisting of the rotation of the mixed infinite

quadrangle ABCDA will be twice the cylinder IEDC.

Then follow 29 corollaries, dealing with special properties of these figures.

Torricelli s paper contains discoveries that he announced to several mathematicians in

letters written during 1643. The result was that before the end of the year Roberval, Fermat,
and Mersenne were acquainted with them; see E. Bortolotti, Archivio di storia della scienze 5
(1924), 212-213. Torricelli also discovered (“De infinitis spiralibus”) that the arc length of
a logarithmic spiral remains finite when it winds an infinite number of times around its

asymptotic point; this paper is also reprinted in E. Torricelli, Opere (1919). See also on
Torricelli s work A. Agostini, 'll problema inverso delle tangenti nelle opere di Torricelli,”

Archeion 12 (1930), 33-37, E. Bortolotti, “Le ‘Coniche’ di Apollonio e il problema inverso

delle tangenti de Torricelli,” ibid., 267-271, and Selection IV.6, note 6.

The existence of finite areas of infinite extent was already known to scholastic writers

and can be found in the so-called sophismata literature of the fourteenth century (Suisseth,

Oresme). The subject of this literature was the discussion of logical, mathematical, or

physical antinomies (contradictions), which easily involved questions concerning the infinite

and the infinitesimal; see A. Maier, An der Grenze von ScholastiJc und Naturwissenschaften
(2nd ed.; Edizioni di Storia e Letteratura, Rome, 1953), 264-269, 336-338. An example of
such a surface is a step figure (Fig. 9), of which the first step consists of a unit square
ABB

1A 1 ,
the second step of a rectangle B1C1C2B2 ,

where C\ is the center of A 1B1 and
= BBlt the third step of a rectangle B2D2D3B3 ,

where I)2 is the center of B2C2 and
B2B3 = B3B2 = BB1} and so on. The total area is (1 + | J J + .

•
)
= 2, since all

rectangles above A 1B 1 can be placed inside the unit square and “exhaust” it.
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c 2

b 3

b 2

Fig. 9

B,

B

10 ROBERVAL. THE CYCLOID

The cycloid has been traced back to the French theologian and mathematician Charles
Bouvelles (c. 1470-c. 1553). Galilei was attracted by it, and wrote in a letter to Cavalieri of
February 24, 1640 (

Opere
,
Edizione nazionale (Barbera, Florence, 1890-1909), XVIII,

153-154): “More than 50 years ago this curved line came to my mind and I wanted to
describe it, admiring it because of its most gracious curvature, adaptable to the arches of a
bridge. I made several tentative calculations on it and on the space comprised between it

and its chord, in order to demonstrate some property. And it seemed at first that such space
may be three times the circle which it describes, but it was not that.” Galilei gave the curve
its name.

About 1630 Father Marin Mersenne (1588-1648), a correspondent of Descartes, Fermat,
and many other mathematicians, suggested the cycloid as a test curve for the different

methods of dealing with infinitesimals. It soon became one of the most discussed curves of
the period, the discussion occasionally leading to acrimonious remarks, so that the curve
has been compared to an apple of discord or called the Helen of the geometers. Among those
who took up the challenge of Mersenne was Gilles Personne de Roberval (1602-1675), a
professor of mathematics in Paris at the College du Roi (now College de France). From his

Traite des indivisibles (1634; first published Paris, 1693; reprinted Paris, 1730; Amsterdam,
1736) we present here a section on the cycloid, translated rather freely (the original is some-
what prolix) by E. Walker in A study of the Traite des Indivisibles (Teachers College, New
York, 1932). It shows how Roberval handled indivisibles, 1 and how he introduced the so-

called companion of the cycloid, that is, the sine curve, which was long known under this

name, even in the days of Euler. Roberval usually called the cycloid a roulette, a custom
followed by Pascal; another name was trochoid (after Greek trochos, wheel). We have, with
Walker, used the now customary term cycloid. The interest in this curve was also connected
with the age-old speculation concerning the rota Aristotelis (see Selection IV.3).

On Roberval see further L. Auger, Un savant meconnu, G. P. de Roberval (Blanchard,

Paris, 1962). On his mathematics see also C. B. Boyer, The history of the calculus (Dover,

1 It is clear that Roberval, like Cavalieri, uses the method of indivisibles, of which he may
have been an independent discoverer (Walker, A study of the Traite des indivisibles, 15, 142),
but his view was somewhat different. He made clear in his Traite that the phrase “the
infinite number of points” stands for the infinity of little lines which make up the whole
line; see Boyer, History of the calculus, 141-142.



ROBERVAL. THE CYCLOID 10
|

233

New York, 1949). On the cycloid see E. A. Whitman, “Some historical notes on the cycloid,”

American Mathematical Monthly 50 (1943), 309-315.

We follow here, with some modifications, the text in Walker, 174-177, 219-222, corre-

sponding to pp. 209ff of the 1736 edition of Roberval’s Traite. The Walker version also

introduces some modern symbolism, and the division into Propositions 1, 2, ... is Walker’s.

Her book also contains translations and paraphrases of other sections of the Traite.

To Generate the Cycloid. Let the diameter AB [Fig. 1] of the circle AEGB move
along the tangent AC, always remaining parallel to its original position, until

it takes the position CD, and let AC be equal to the semicircle AGB. At the same
time, let the point A move on the semicircle AGB, in such a way that the speed

ofAB along AC may be equal to the speed ofA along the semicircle AGB. Then,

when AB has reached the position CD, the point A will have reached the posi-

tion D. The point A is carried along by two motions—its own on the semicircle

AEGB, and that of the diameter along AC. The path of the point A, due to these

two motions, is the half cycloid A D, the second half being symmetrical

with the first.

The Nature of the Cycloid. Let the line AC and the semicircle AGB be divided

into an infinite number of parts such that arc AE = arc EF =

= line AM = line MN = line NO = •

.

Draw the sine EE X perpendicular to the diameter AB, and the versed sine AE
X

is the altitude ofA when it has come to E. Similarly draw FF
X ,
GGX ,

etc.

Let MM
X be parallel and equal to AE X ,

NN
X parallel and equal to AFX ,

etc.

Let M XM2 be parallel to AC and equal to EE
1 ,
N XN2 parallel to AB and equal

to FF
X ,

etc. [Roberval’s notation for M x ,
Nlt ... is 1, 2, . .

. ;
for M2 , N2 ,

... is

8, 9,....]

When the diameter has reached the point M, the point A will have reached

the position E, the distance of A above AC will be MMX = AE X ,
and the dis-

tance of A from the diameter AB will be EE
X = M XM2 ,

hence when the
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diameter is at M the point A is at M2 . In the same way, when the diameter is

at N the point A is at N2 ,
etc. We thus get two curves, one AM2N2 R2D,

and the other AM XNX R
X
D. The first of these is the path of the point A,

which is the first half of the cycloid.

The Companion of the Cycloid. The curve drawn through the pointsAM 1N 1

R
X
D, is known as the companion of the cycloid.

2

Proposition 1 . The area of the figure included between the cycloid and the com-

panion of the cycloid is equal to the area of half of the generating circle.

Proof. Within the figure AM2N2 N 1M 1
A we have M

l
M2 = EE X ,

NXN2 = FF
X , 0 X02 = CG 1 ,

etc.

Now M
XM2 , NxN2 , 0x02 divide this figure into strips whose altitudes are

AE
X ,
EXFX ,

F1G 1 ,
. . ., while EE

X , FFX , GG X , . .

.

divide the semicircle AHB
into strips having the same altitudes. Hence the corresponding infinitesimal

strips are equal. Therefore the area of the figure AM2N2 D N
1M 1

- A
is equal to the area of the semicircle AHBA

Proposition 2. The area of the figure included between the cycloid and its base is

equal to three times the area of the generating circle.

Proof. The companion of the cycloid, the curve AM XN X
!), bisects the

parallelogram ABCD, since to each line in ACDM
X
there corresponds an equal

fine in ABDMX .

Therefore the area of ACDM
X = \ the area of ABCD
= | „ ,, „ 2- circle AGB
= „ „ „ circle AGB.

Therefore the area of ACDM2 = ACDM X + AM2
• D Mx

= circle AGB + \ circle AGB
= | circle AGB.

Doubling, the area between the whole cycloid and its base is equal to three times

the area of the generating circle.

Proposition 3. To construct a tangent to the cycloid.

Construction. Let R2 be the given point at which the tangent is to be drawn.
Draw R2R x parallel to AC. Draw R2U tangent to the generating circle RR2 and
make R2U = R2R X

. Complete the parallelogram R2U VR X ,
and draw the diag-

onal R2 V

.

Then R2 V is the required tangent.

Proof. The direction of the motion of the point R2 which is due to the motion
of AB along AC is R2R X ;

the direction of the motion of the point R2 which is

due to the motion of the point A on the circumference is R2 U, and since these

motions are always equal, it follows that R2R X
must equal R2U

.

Therefore R2 V
is the tangent to the cycloid at R2 ,

since it is the resultant of the two motions.

2 The “companion of the cycloid” is a sine curve. If AC is taken as the X-axis, AB as the
Y-axis, its equation is, in our notation, y = 1 — cos x.

3 When arc AE — <p [radius R = 1], then the equation of the cycloid is x = <p
— sin <p,

y = 1 - cos 9?, and the areaAM2DM 1 A =
(<p - <p + sin <p)

2 dy = j£ sin2
<p dcp = tt/2.
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Addendum. If, instead of being equal, the magnitudes of the two motions had
been in some other ratio, the parallelogram would have been constructed with

its sides in that ratio. 4

The next 22 Propositions deal with a number of area computations and other integrations.

Curves discussed include the parabola, the limapon of Pascal (which Roberval calls the

conchoid of the circle), ring surfaces, the hyperboloid of revolution (which Roberval calls

the hyperbolic conoid), cones, spheroids, the conchoid of Nicomedes, and the curve intro-

duced as follows, which is known as the hippopede of Eudoxus. 5

Proposition 26. On the surface of a right cylinder draw a line enclosing an area

equal to the area of a given square, and that with a single stroke of the compasses.

Construction. Let AB [Pig. 2] be the side of the given square. Bisect AB at C.

Describe a circle FME whose diameter FE is equal to AC. Construct a right

cylinder whose midsection is the circle FME, and whose altitude is equal at

least to 2FE. With F as a fixed point, and with an opening of the compasses

equal to FE, draw a closed curve XYZ on the cylinder [Pig. 3]. Then XYZ is

the required curve enclosing an area equal to the square on AB.

4 The tangent construction uses kinematic concepts and is related to the method of Archi-
medes in his book On spirals-, see T. L. Heath, The works of Archimedes (Cambridge
University Press, Cambridge, England, 1897; reprint, Dover, New York), 151ff, esp. Props.
16—20. While Roberval used Greek methods to find tangents, his contemporary Fermat was
laying the foundations of the present method, based on the derivative (see Selection IV.8).

5 This curve, which plays a role in the planetary model constructed by Eudoxus (fourth

century b.c.), was one of the curves discussed by Mersenne, Fermat, Roberval, and other
mathematicians of their day, including the Toulouse mathematician Antoine de Lalouvere,
who called the curve cyclocylindrique; Veterum geometria promota in septem de cycloide libras

(Toulouse, 1660). The curve is the intersection of a sphere with a cylinder.
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The proof is based on dividing the circumference FME into an indefinite number of

equal parts. Then the text continues with the integration of the squares of sines and cosines,

as follows.

Proposition 32. The sum of the squares of the sines on a semicircle is equal to

one-eighth of the square of the diameter taken as many times as there are sines.

Proof. Let the circumference FR XE (center D = Sf) be divided into an infinite

number of equal parts, and let all the lines RS represent the sines of the succes-

sive arcs [Fig. 4, where the arc R
1
F is divided into n = 10 equal sections by

R1R2 Rg, and similarly for the arc Rx
E]

.

Now

DR\ = R ltSf + DSf,

DR\ = R2S\ + DSl

But

and

Likewise,

and

R1S1 = sin (ER{)

R2S2 = sin (ER2 )

DS2 = sin (90° — ER2 )

= RgSg.

R3S3 = sin
(
ER3 )

DSg — RgSg .

Thus each line DS is equal to a corresponding line RS which is the sine of one

arc. Therefore, adding,

n-DR2 = 2 ^ -S'S
2 (from zero to DRf) = n- \-EF2

,
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where n represents the measure of the quadrant arc. But in the semicircle there

will be twice as many sines as we have here. Hence

2-^RS2
_ 1

2 -n-EF2 ~ 8’

or, since 2n is the measure of the semicircle, the sum of the squares of the sines

in a semicircle is one-eighth of the square of the diameter multiplied by the

number of units in the semicircle. 6

Proposition 33. The sum of the squares of the versed sines in a semicircle is

three-eighths of the square of the diameter taken as many times as there are versed

sines. 1

Proof. FE2 = FS2
g + S9E2 + 2FSg -SgE

= FSl + SgE2 + 2RgSl

FE2 = FSl + SeE2 + 2R8Sl

Adding:

2n-FE2 = ^ FS2
+ ^ SE2 + 2

(
2 2' RS

)
’

where 2n = semicircle FRE; the sum 2 is taken from 0 to FE and 2' from
0 to RD. Now by Proposition 32, n-FE2 = 8 2' FS2

;
therefore

8(2 2
'

EE2
)
= 2 2 FS2 + 2- (2 2' RS2

)

1

whence

6^2^ RS2
^j
= 2 ^ FS2

,

or

2 2
' rs2 = i2 fs2 -

But by Proposition 32,

2^ FS2 = 4(2n-EF2
).

6 Hence
JJJ

sin2
9? dtp = J- 4 - 7r = w/2. Compare this result with that of Pascal (Selection

III. 7). In those days sines were taken as line segments, whose length depended on the radius
R of the circle. The custom of taking R = 1, and hence of regarding sines (and cosines,
tangents, etc.) as ratios, begins with Euler, Introductio in analysin infinitorum (Lausanne,
1748).

The versed sines were introduced by versed sin a = R — cos a. The companion of the
cycloid is a versed-sine curve with respect to BA and BC as axes.
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Therefore

\(2n-EF2
) =^ FS2

or

2 FS2 = |(2n-EF2
).

or, in words, the sum of the squares of the versed sines in a semicircle is three-

eighths of the square of the diameter multiplied by the number of units in the

length of the semicircle. 8

Proposition 34. The volume of the solid generated by the cycloid as it revolves

about its base line as an axis is equal to five-eighths of the volume of the circum-

scribed cylinder.

In Fig. 2 the lines M

M

x ,
NNlt .

.

., are versed sines, hence it follows from

Proposition 33 that

the solid generated by AN^DC = | the cylinder ABDC,

but

the solid generated by AN 1DN2 = J ,, ,, ABDC,

and therefore, by addition,

the solid generated by AN2DC = f ,, ,, ABDC.

But AN2DC is only one-half of the cycloid, therefore the solid generated by
the whole cycloid is five-eighths of the whole circumscribed cylinder. 9

Notice that the solid generated by AN2DN X is equal to the solid generated by
the semicircle DC, because these two plane figures have their corresponding

lines equal each to each and at the same distance from the axis AC; and the

semicircle DC = \ of the parallelogram ABDC, hence the solid AN2DN 1 =
l of the cylinder ABDC.

11 PASCAL. THE INTEGRATION OF SINES

Roberval was one of the men who influenced Blaise Pascal (on Desargues’s influence see

Selection III.7), who in his turn wrote a treatise on the cycloid, which he called a roulette

(1658). The following paper, which still uses to a certain extent the notion of indivisibles,

shows how Pascal integrated sinn <p, n = 1, 2, 3, 4, ...

,

making use thereby of a “charac-

teristic triangle,” though not yet that of
(
dx

,
dy, ds) which we often use now. It is entitled

s

JS (l - c°s <p)*d<p = |-4. w =~
9 77 Jo (1 - 008 V)

3 d(P = i Avir =
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Traite des sinus du quart de cercle (1659); Oeuvres, ed. L. Brunschwicg and P. Boutroux

(Hachette, Paris, 1914-1921), IX, 60-76.

Pascal’s paper differs from that of Roberval: (a) in his partial rejection of indivisibles;

(6) in his more general choice of the limits of the integration interval, so that here we may

see a transition to the indefinite integral

:

and so forth.

ON THE SINES OF A QUADRANT OF A CIRCLE

Let ABC [Fig. 1] be a quadrant of a circle of which the radius AB will be con-

sidered the axis and the perpendicular radius AC the base; let D be any point

on the arc from which the sine DI will be drawn to the radius AC; and let DE
be the tangent on which we choose the points E arbitrarily, and from these

points we draw the perpendiculars ER to the radius AC. 1

E

C R R A

I say that the rectangle formed by the sine 2 DI and the tangent EE is equal

to the rectangle formed by a portion of the base (enclosed between the parallels)

and the radius AB.
For the radius AD is to the sine DI as EE is to RR. or to EK. which is clear

because of the similarity of the right-angled triangles DIA, EKE, the angle

EEK or EDI being equal to the angle DAI.

Proposition I. The sum of the sines of any arc of a quadrant is equal to the

portion of the base between the extreme sines, multiplied by the radius. 3

1 The triangle EEK of this figure led Leibniz to his early researches into the calculus; it

gave him the idea of the “characteristic” triangle, when EE is small. The segment EE is a

tangent in Pascal’s essay. With Leibniz it became a chord. For the different forms of this

triangle see D. Mahnke, “Neue Einblicke in die Entdeckungsgeschichte der hoheren

Analysis,” Abhandlungen der preussischen Akademie der Wissenschaften, Kl. Math. Phys. 1

(
1925 ), 1-64 .

2 As with all authors up to the eighteenth century, Pascal’s sine of an angle <p is a line,

and not a ratio. It is what we now write R sin <p, R being the radius of the circle.

3 This is equivalent to our formula
J"®J

sin <p d<p — cos <p0 — cos <p l .
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Proposition II. The sum of the squares of those sines is equal to the sum of
the ordinates 4 of the quadrant that lie between the extreme sines, multiplied
by the radius. 5

Proposition III. The sum of the cubes of the same sines is equal to the sum
of the squares of the same ordinates between the extreme sines, multiplied by
the radius. 6

Proposition IV. The sum of the fourth powers of the same sines is equal to the
sum of the cubes of the same ordinates between the extreme sines, multiplied by
the radius.

And so on to infinity.

Preparation for the proof. Let any arc BP be divided into an infinite number
of parts by the points D [Fig. 3] from which we draw the sines PC). DI, etc

;

let us take in the other quadrant of the circle the segment AQ, equal to AO (which
measures the distance between the extreme sines of the arc, BA, PO ); let AQ
be divided into an infinite number of equal parts by the points H, at which the
ordinates HL will be drawn.

4 To understand the difference between “ordinates” and “sines” we must take Pascal’s
triligne (“trilinear figure”), formed by two perpendicular lines AB and AC and a (convex)
curve BLC (Fig. 2); see Oeuvres, VIII, 369). The points D divide AB into equal parts; the

points E do the same for AC, and the points L for the arc BLC (every arc is of the same
length). Then: (a) the perpendiculars to AB, from D to the curve, are the “ordinates to
the axis” (ordonnees a I’axe); (b) the perpendiculars to AC, from E to the curve, are the
“ordinates of the base” (ordonnees a la base); (c) the perpendiculars from L to AC are the
“sines on the base”; (d) the perpendiculars from L to AB are the “sines on the axis.”
The difference between “ordinates” and “sines” is expressed at present by the change in
the variable of integration.

5 Proposition II is equivalent to our formula sin2
r d<p =

-j£J sin <p d(cos <p), and
therefore expresses a change of variable. The area is equal to i(Vl - <p°) - J(sin Vl cos a,,)

+ J(sin <p0 cos <p0 ).

6 Hence sin3
<p d<p = sin2

<p d(cos <p).
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Proof of Proposition I. I say that the sum of the sines DI (each of them multi-

plied of course by one of the equal small arcs DD) is equal to the segment AO
multiplied by the radius AB.

Indeed, let us draw at all the points D the tangents DE [Fig. 1], each of which

intersects its neighbor at the points E
;
if we drop the perpendiculars E Ft it is

clear that each sine DI multiplied by the tangent EE is equal to each distance

RR multiplied by the radius AB. Therefore, all the quadrilaterals formed by the

sines DI and their tangents EE (which are all equal to each other) are equal to

all the quadrilaterals formed by all the portions RR with the radius AB; that is

(since one of the tangents EE multiplies each of the sines, and since the radius

AB multiplies each of the distances), the sum of the sines DI, each of them

multiplied by one of the tangents EE, is equal to the sum of the distances RR,

each multiplied by AB. But each tangent EE is equal to each one of the equal

arcs DD. Therefore the sum of the sines multiplied by one of the equal small

arcs is equal to the distance AO [Fig. 3] multiplied by the radius.

Note. It should not cause surprise when I say that all the distances RR are

equal to AO and likewise that each tangent EE is equal to each of the small arcs

DD, since it is well known that, even though this equality is not true when the

number of the sines is finite, nevertheless the equality is true when the number

is infinite; because then the sum of all the equal tangents EE differs from the

entire arc BD, or from the sum of all the equal arcs DD, by less than any given

quantity: similarly the sum of the RR from the entire AO.

Proof of Proposition II. I say that the sum of the squares of the sines DI (each

of them multiplied by one of the equal small arcs DD) is equal to the sum of the

HL, or to the area BHQL, multiplied by the radius AB.
For if the sines DI as well as the ordinates HL are extended to the circum-

ference on the other side of the base, intersecting them at the points G and N,

it is clear that each DI will be equal to each IG
,
and II

N

to HL.
In order to prove the proposition that all the squares of the DI times DD are

equal to all the HL times AB, it is enough to prove that the sum of all the HL
times AB, or all the HN times AB, or the area QNN multiplied by AB, is equal

to all the GI times ID times EE, or to all the GI times RR times AB (since ID
times EE is equal to each RR times AB). Then, by taking out the common
quantity dB we have to prove that the area AQNN is equal to the sum of the

rectangles GI times RR: this is clear, since the sum of the rectangles formed by

each GI and each RR differs only by less than any given quantity from the area

AOGN or, what is the same, AQNN, since the segment AQ was constructed to

be equal to AO: and this was to be proved.

12 PASCAL. PARTIAL INTEGRATION

From the previous selection we can see how well Pascal understood the importance of the

change of variable. This led him to operations equivalent to our partial integration, as we

can see in the following fragment of the Traite des trilignes rectangles et de lews anglets;

Oeuvres, ed. L. Brunschwicg and P. Boutroux (Hachette, Paris, 1914-1921), IX, 3-44. The
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triligne is defined in the previous selection (note 4). The present selection is taken from
pp. 5-8.

TREATISE ON TRILINEAR RECTANGULAR FIGURES

Let ABC [Fig. 1] be a rectangular trilinear figure, of which the ordinates to the

axis are DF, and the ordinates to the base are EG. These intersect the curve in

G, from which perpendiculars OR are dropped to the axis; these perpendiculars

I call counterordinates
[
contr’ordonnees]. Let GR and FI) be continued in-

definitely. And let there be on the axis AB at the other side of the trilinear figure

an arbitrary figure BKOA in the same plane bounded by the extreme parallels

CA, BK (this figure will be called the adjunct of the trilinear figure). Let this

adjunct figure be intersected by the ordinates FD in the points 0 and by the
counterordinates GR in the points I.

B K

Fig. 1

I say that the sum of the rectangles on ffi and DO, bounded by every
ordinate of the trilinear figure and every ordinate of the adjunct figure, is equal
to the sum of the areas ARI which are the portions of the adjunct between every
one of the counterordinates and the end point of the adjunct at A.

Indeed, let us suppose that the trilinear figure BCA is multiplied into the
figure BAOK, so that thus a certain solid figure is formed. 1 This means that at
all points of ABC perpendiculars to its plane are erected, forming an infinite

prismatic solid with ABC as base. Let also the figure BAOK be rotated about the
axis BA into a position perpendicular to the plane of ABC, and finally let the
base AC be lifted parallel to itself in such a way that the point A always stays

on the contour of the lifted figure AOIKB till it falls back to B; that portion of

the infinite prismatic solid cut out by the surface described by the line CA in its

motion will be the solid that is considered here. It is bounded by four surfaces,

among which the trilinear figure serves as base.

1 This multiplication of one figure into another is the integration principle introduced as
ductus plani in planum” by Gregoire de Saint Vincent, a Jesuit mathematician of Ant-

werp, in his Opus geometricum quadraturae circuli (Antwerp, 1647); see J. E. Hofmann,
“Das Opus geometricum des Gregorius a S. Vincentio und seine Einwirkung auf Leibniz,”
Abhandlungen der preussischen Alcademie der Wissenschaften, Math.-Naturw. Klasse (1941,
Publ. 1942), no. 3, 1-80. In our present notation it can be expressed as the evaluation of

J
b

a y(x)z(x
) dx when y(x) and z(x) are given.
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Let us now introduce two types of plane perpendicular to the plane of ABC:

the first passing through the ordinates DF (which produce as sections of

the solid the rectangles on FD and DO, bounded by the ordinate DF and the

ordinate DO of the adjunct figure); the second type passing through the

ordinates GE, parallel to the adjunct BAOK (in its rotated position) and inter-

secting the same solid in sections all equal and similar to the portions BIA
lying between any counterordinate RI and the extreme point A of the figure

(this can be understood by the parallelisms, each of these planes being parallel

to the rotated adjunct, and AC being parallel to itself in its motion). Now it can

be seen that the sum of the sections made by each type of plane is equal to the

solid, and they are consequently equal to each other (since the indefinite parts

AE, EE, etc. of the base are equal both among themselves and to the equal and

indefinite parts AD, DD, etc. of the axis). 2 Hence the sum of all rectangles on

FD and DO is equal to the sum of all the portions RIA

:

which was to be proved.

After a lemma on the area of a parabolic segment (parabola of any integral order) the text

continues:

Proposition I. The sum of the ordinates to the base is the same as the sum of

the ordinates to the axis.

Indeed, each of them is equal to the area of the trilinear figure.

Proposition II. The sum of the squares of the ordinates to the base is twice

the sum of the rectangles formed by each ordinate to the base and its distance

to the axis. That is, the sum of all the EG squared is twice the sum of all the

rectangles on FD and DA.

If we take AC as the positive X-axis and AB as the positive 7-axis and if the curve AOK
is given by a: = /(«/), then Pascal’s theorem can be expressed by

rv = B l !i = b ry = B rx=D
x dF(y) = xF(y) - F(y)dx=\ F(y) dx,

Jy = A J y=A Jy=A Jx=C

where F(y) = j^f(y) dy, and x = 0, y = 0 at A. It is therefore a partial integration. In

Proposition I, F(y) = y, so that

r-B rD
xdy = ydx.

Ja Jc

2 This equipartition is necessary to avoid contradictions in the theory of indivisibles; see

the letter of Torricelli to Cavalieri in Selection IV. 6.
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In Proposition II,f(y) = y (the line AOK is a straight line), F(y) = \y
2

, and

Jo

xydy = ij%2 dx.

Pascal has several more examples based on this change of variables.
It is here that we meet one of Pascal’s references to a fourth dimension, when lie gener-

alizes his tnlignes from plane to space and beyond: “La quatrieme dimension n’est point
contre la pure geometrie” (The fourth dimension is not against pure geometry). See H.
Bosnians, “Sur 1’interpretation geometrique donnee par Pascal a l’espace a quatre dimen-
sions,” Annales de la Societe Scientifique de Bruxelles 42 (1923), 337-345.

13 WALLIS. COMPUTATION OF n BY SUCCESSIVE INTERPOLATIONS
After 1650, analytic methods began to receive more attention and to replace geometric
methods based on the writings of the ancients. This was due partly to the acceptance into
geometry of those algebraic methods that Descartes and Fermat had introduced, and partly
to the still very active interest m numerical work—interpolation, approximation, logarithms
—a heritage of the sixteenth and early seventeenth centuries. This tradition was strong in
England, where Napier and Briggs had labored.

This analytic method advanced rapidly through the efforts of John Wallis (1616-1703),
of Emmanuel College, Cambridge, who in 1649 became the Savilian professor of geometry
at Oxford. He was one of the founders of the Royal Society and, through his work, in-
fluenced Newton, Gregory, and other mathematicians. In his Arithmetica infinitorum
(Oxford, 1655), he led explorations into the realms of the infinite with daring analytic
methods, using interpolation and extrapolation to obtain new results. The title of the book
shows the difference between Wallis’ method—he called it “arithmetica”; we would say
(with Newton) “analysis”—and the geometric method of Cavalieri. First Wallis derived
Cavalieri s integral in an original way. Thereupon, he plunged into a maelstrom of numerical
work and, with fine mathematical intuition to guide him in his interpolations, arrived at the
infinite product for n that bears his name. See J. F. Scott, The mathematical work of John
Wallis (Taylor and Francis, Oxford, 1938); also A. Prag, “John Wallis,” Quellen und
Studien zur Geschichte der Mathematik

(
B

)

I (1931), 381-412.

Proposition 39. 1 Given a series of quantities that are the cubes of a series of
numbers continuously increasing in arithmetic proportion (like the series of
cubic numbers), which begin from a point or zero (say 0, 1, 8, 27, 64, . . .); we
ask for the ratio of this series to the series of just as many numbers equal to the
highest number of the first series.

1 In previous propositions Wallis has derived the limit

n-» oo nk + 1 k + 1

for lc = 1,2. This Proposition 39 prepares for the case k = 3; it shows Wallis’s typical
inductive and analytic method.
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The investigation is carried out by the inductive method, as before. We have

0 + 1 = 1 2 11
1 + 1=2 ~ 4 ~ 4

+
4

;

0 + 1 + 8 = 9 3 1 1.

8 + 8 + 8 = 24“8~4 + 8’

0+1+8 + 27 = 36 4 1 1.

27 + 27 + 27 + 27 = 108 “ 12
“ 4

+
12’

0 + 1 + 8 + 27 + 64 = 100 5 1 1
.

64 + 64 + 64 + 64 + 64 = 320 " 16
-

4
+

16’

0 + 1 + • •
• + 125 = 225 _ 6 _ 1 1

125 + • •
• + 125 = 750 ~ 20 “ 4

+
20’

0 + • •
• + 125 + 216 = 441 _ 7 _ 1 1

216 + • •
• + 216 = 1512 ~ 24 ~ 4

+
24’

and so forth.

The ratio obtained is always greater than one-fourth, or J. But the excess

decreases constantly as the number of terms increases; it is iV, ys, ys> • • •

There is no doubt that the denominator of the fraction increases with every

consecutive ratio by a multiple of 4, so that the excess of the resulting ratio over

\ is the same as 1 : 4 times the number of terms after 0, etc.

Proposition 40. Theorem. Given a series of quantities that are the cubes of a

series of numbers continuously increasing in arithmetic proportion beginning,

for instance, with 0, then the ratio of this series to the series of just as many
numbers equal to the highest number of the first series will be greater than

The excess will be 1 divided by four times the number of terms after 0, or the

cube root of the first term after 0 divided by four times the cube root of the

highest term.

The sum of the series 03 + l
3 + • •

• + l
3

is l
3 + ^—77— l

3
,
or, if to is the

4 4<

yyi Yfi

number of terms, -7- l
3 + —, l

3 = - ml3 + - ml2
. This is apparent from the pre-

4 4f 4 4
vious reasoning.

If, with increasing number of terms, this excess over | diminishes con-

tinuously, so that it becomes smaller than any given number (as it clearly does),

when it goes to infinity, then it must finally vanish. Therefore:

Proposition 41. Theorem. If an infinite series of quantities which are the cubes

of a series of continuously increasing numbers in arithmetic progression, begin-

ning, say, with 0, is divided by the sum of numbers all equal to the highest and

equal in number, then we obtain j. This follows from the preceding reasoning.

Proposition 42. Corollary. The complement AOT [Fig. 1] of half the area of

the cubic parabola therefore is to the parallelogram TD over the same arbitrary

base and altitude as 1 to 4.

Indeed, let AOD be the area of half the parabola A I) (its diameter AD, and

the corresponding ordinates DO, DO, etc.) and let AOT be its complement.
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Since the lines DO, DO, etc., or their equals AT, AT, etc. are the cube roots 2

of AD, AD, . . ., or their equals TO, TO,..., these TO, TO, etc. will be the
cubes of the lines AT, AT,... The whole figure .407' therefore (consisting of
the infinite number of lines TO, TO, etc., which are the cubes of the arith-
metically progressing lines AT, AT,...) will be to the parallelogram ATD
(consisting of just as many lines, all equal to the greatest TO), as 1 to 4, accord-
ing to our previous theorem. And the half-segment AOD of the parabola (the
residuum of the parallelogram) is to the parallelogram itself as 3 is to 4.

In Proposition 44 the result of these considerations on the quotient of the two series

ZP-i an(l 2 nk (n + 1 terms) is laid down in a table for k = 0
,
1

, 2 , 10. Wallis dis-
criminates for i

k between the series of equals (k = 0), of the first order (k = 1), of the second
order (k = 2), and so forth (series aequalium, primanorum, secundanorum, and so forth).

Proposition 54. Theorem .

3 If we consider an infinite series of quantities begin-
ning with a point or 0 and increasing continuously as the square, cube, bi-
quadratic, etc. roots of numbers in an arithmetic progression (which I call the
series of order k = ± £, J, . .

. ), then the ratio of the whole series to the series
of all numbers equal to the highest number is expressed in the following table

:

k Result

4
4or as 1 to

2 Wallis uses the terms ratio subduplicata, subtriplicata etc., to denote square, cubic, etc.
roots; the ratio subduplicata of A 2/B2

is A/B. These terms are not classical, and may be
medieval. Wallis uses them here and in his Mathesis universalis (Oxford, 1657), chap. 30.
The term duplicate ratio is classical; see Euclid, Elements, Book V, Definition 9: if alb = blc
then a/c has the duplicate ratio of a/b, hence o/c = a2

/6
2

. Similarly, triplicate ratio in
Definition 10 means the ratio of cubes. See G. Enestrom, “Ueber den Ursprung des Termes
ratio subduplicata’,” Bibliotheca mathematica [3] 4 (1903), 210-211- 6 (19051 410- 12
(1911-12), 180-181.

’ h ’

3 Propositions 54 and 59 are supplementary, with the tabulation of fit xk dx = l Ilk + 1)
for all positive rational k.
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Wallis calls these series of order . . . series subsecundanorum, subtertianorum, etc.

Proposition 59 gives the full table for k = pjq (Table 1).

\P
q\ 0 1 2 3 10

i

1

1

1

2
1

3
1

4 Tf

Quadraticae 2
2
2

2
3

2
4

2
5

2
12

Table 1
Cubicae 3

3
3

3
4

3
5

3
6

3
13

Decimanae 10 olo
10

11

10
12

10
13

10

20

Wallis’s table uses for p the terms aequalium, primanorum, etc., and for q the terms

quadraticae
, cubicae, etc. if q = 2, q = 3, etc.

Proposition 64. If we take an infinite series of quantities, beginning with a

point or 0, continuously increasing in the ratio of any power, an integer or a

rational fraction, then the ratio of the whole to the series of as many numbers

equal to the highest number is 1 divided by the index of this power + 1.
4

At the end of the explanation Wallis adds: “If we suppose the index irrational, say V3,

then the ratio is as 1 to 1 + V3, etc.”

In Prop. 87 we have the analogous result for negative powers (the term “negative ” is used).

Proposition 108. If two series be given, one that of equals, the other of the

first order, and if the first term of the latter series is subtracted from the first

term of the series of equals, the second term from the second term, etc., then

the differences give one-half of the total first series. However, when we add the

term, the aggregates are found to be f of the series of equals. 5

For instance, let R be the arbitrary term of the series of equals and the highest

term of the series of the first order. Let its infinitely small part be denoted by

a = R/oo, and let A be the number of all terms (or the altitude of the figure);

this number will go to infinity. Then the sum of the aggregates is:

4 Here the theorem of note 3 is explicitly formulated as “Theorema universalis.”
5 This means, in our notation, JJ (1 — x) dx = (1 + x) dx = f.
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R — Oa

R — la

R — 2a

R — 3a

etc.

R - R

AR - \AR

R + Oa

R + la

R -f- 2a

R -f- 3a

etc.

R + R

AR + \AR

The sum of all equal terms is clearly AR. The sum of the terms of the series of
the first order is half of it: %AR. Now AR - \AR = \AR. A R + \AR = §AR.
This means that the former series is to the series of equals as £ to 1, and the
latter as •§ to 1

.

Proposition 111. Theorem. If from a series of equals are subtracted, term by
term, the terms of a series of the second, third, fourth, etc. order, these dif-

ferences give §, | , j of the total series of equals. If we add, the aggregates are

|, |, |, etc. of this total sum. 6 Indeed, take the terms

R2 + Oa2 R3
+ Oa3 Rl + Oa4

R2 + la2 R3 + la3 Ri
+ la4

R2
+ 4a2 R3 + 8a3 Ri + 16a4

R2 + 9a2 R3 + 27

a

3 Ri
+ 81a4

until R2 + R2 R3
+ R3 Ri + R*

Then the sums are (Prop. 44)

AR2
+ \AR2

,
AR3

+ \AR3
,
AR4

+ \AR\

Hence the sum of the differences gives

1—1 — 21
3 — 3 > 1-1 = 1, 1 -

5
=

5 , etc.

and the sum of the aggregates gives

1 + i = f> 1 + i = 1 + 5=1, etc.

Proposition 117. . . . We replace the la, 2a, 3a, etc. of previous propositions
by a, b, c, etc., to show better the procedure of the operation: 7

Series Squares Cubes

R -- 0 R2 - OR + 00 R3 - OR 2 + 001? - 000
R -- a R2 - 2aR + a2 R3 - 3aR2 + 3aR - a3

R -- b R2 - 2bR + b2

R -- c R2 - 2cR + c2

etc. etc.

R -- R R2 - 2RR + R2 R3 - 3RR2 + 3R2R - R3

AR ~
* AR2 - fAR2 + iAR2 AR3 - UR3 + |AR3 - IAR

6 In our notation, (1 ± xn
) dx = 1 + l/(n + 1), n > 0.

7 In our notation,
JJ (1 - x)k dx = l/(* + 1) = k\j(k + 1)!, k 3= 0.
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1 _ 2 4. 1 _ 1- l_a.4_3._l_l-1 2^3 — 3 ’
1 2^3 4 — 4 >

1x2 1x2x3.
2x3’ 2x3x4’

and so on. We multiply continuously the numbers in arithmetic progression by

each other (as many as agree with the value of the power), beginning with 1 and

2 and then regularly increasing with 1

.

Proposition 121. Corollary. The ratio of the [area of a] circle to the square of

the diameter (or of an ellipse to any of its circumscribed parallelograms) is as

the series of square roots of the term-by-term differences of the infinite series of

equals and the series of the second order to this series of equals. 8

Indeed, if we call R [Fig. 2] the radius of the circle (of which a = R/co is the

infinitesimally small part), and if we construct an infinite number of per-

V
R

pendiculars or sinus recti in order to complete the quadrant, then these per-

pendiculars are the mean proportionals between the segments of the diameters

(as is well known), or

between R + 0, R + la, R + 2a, R + 3a, etc.

and R — 0, R — la, R — 2a, R — 3a, etc.

whose rectangles are R2 — 00, R2 — la2
,

R2 — 4a2
,

R2 — 9a2
,
etc.

the mean prop, are V

R

2 — 00, V

R

2 — la2
,
V

R

2 — 4a2
, V

R

2 — 9a2
,

etc.

Hence, whatever the ratio of the sum of these roots is to that of their maxi-

mum (the radius), such is also the ratio of a quadrant of the circle (which con-

sists of these roots) to the square of the radius (which consists of these maxima).

Therefore it is also the ratio of the whole circle to the square of the diameter.

Hence

or £;

For this ratio Wallis writes 1
:

(in our notation 7t
/4).

9

Proposition 132 [Fig. 3]. If we subtract term by term from the infinite series

of equals the series of the first order (or, if we like, of yth order), of order

8 In our notation, JJ V 1 — x2 dx = 7t/4.

9 The standard notation rr for 4
:

is due to William Jones (1675-1749), a friend ofNewton,

who assisted him in having some of his manuscripts published (see Selection V.4). In a

textbook of 1706 he wrote tt for 3.14159 etc. Euler adopted it and provided for its universal

acceptance through his Introductio in analysin infinitorum (Lausanne, 1748).
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[1 Ip =] J, etc., then the series of differences and the series of order \k =] 2,

3, 4, etc. formed from them have the same ratio to the series of equals as has 1

to the numbers in [Table 2].
10

\k
P\ 0 1 2 3 4 10 X 1

2 0 2 1

3
2 2

5
2

0 1 1 1 1 i 1 -5 GO
1

1

2 3 d 3
8 A (l = k+l)

1 1 2 3 4 5 11 0 i 1 1 1 1 i 1 1

2 1 3 6 10 15 66 \ i

3
2 OJ|4^

15

8 fo A x2f!

3 1 4 10 20 35 1

1

2 1 i? 2 2? 3
7 21+0
2 2

3

i D i 3 d 5
2

8 q
3
U 35

8
§3 Q 21-1.21+1
l5
o Ax — 3-2

10 1 n 66 206 1001 184754 2
3
8 1

'

1

Z
1

;

1

8 3 4 3H 8 6
63 21+0 2i+l
8 2

~2~

Table 2 Table 3

This follows from the preceding. Any intermediate number in this table is the

sum of the two numbers next to it, one above and the other to the left.

Proposition 184. In the preceding table we can interpolate in the following

way [Fig. 4],

Proposition 189. We can now interpolate other series in the preceding table

[as in Table 3],
11

Proposition 191. Problem. It is proposed to determine this term as closely

as possible in absolute numbers.

Wallis finds, by further interpolation (see the row for p = % in Table 3, from which can be

derived

— ir

i

8 3 LI
4|—1 £
3 LJ 2

etc.),

10 In our notation, fl (1 — x 1 lp
)

k dx = ^ + + P — > Z = k + 1, k, p 3s 0. TheJU 1-2 -p
listing (2Z + 0)/2, etc. is from Proposition 184.

11 The interpolation is by means of the expressions A, 1, A(2Z — 1)/1, etc., with the
insertion of fractional values for 1 . Since

JJ (1 - xllp)
k dx = p JJ (1 - y)

ky’’~ 1 dy = pB(p, k + 1),

Jo f
1 - xllk

)
p dx = k Jo (i -

y)
p
y
k ~ 1 dv = tcB{k, p + i),

the symmetry of the table expresses the symmetry of the B-function. Both integrals are

equal to

kp Y(k)T(p) _ F(fc + l)r(p + 1 )

k + pY(k + p)
~

T(A; + p + 1)

The values for k and p are positive integers and multiples of If y = z2
,
we find

Jo (1 — xllp
)

k dx = 2p JJ (1 - z2 )
kz2p

~ 1 dz f

which is a multiple of the integral
JJ xmy

k dx, x2 + y
2 = 1. We can say that Wallis com-

puted this integral for integral values of m and k. The symbol oo for “infinite” is due to
Wallis. See also T. P. Nunn, “The arithmetic of infinities,” Mathematical Gazette 5 (1909—
1911), 345-356, 377-386, with a paraphrase of the book.
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PROP. OJtXXXIII.
Theorema.

LAtus numeri Figurati cujuflibet, in qualibet foie Tabell*<

fitae (prop. 132.) quoufque libet continuanda:; ad
'

numerum Figuratumj rationem habet cognitam.

Nempe earn quam indicat prop, prseced.

PROP. CLXX XIV.
Theorema

.

ETproptorea, Series fequentea in praemifla Tabella quoufqaelfct
continuata, non erit difficile interpdare.

Nerqpe, invento per prop. 182. cujufque proprio charadlere, fiat intmdnom in prop. 173, 178, 18L

Tabella vero, ut didum eft, interpolau fie ft pvhilvKir.
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that is

less than
3 x 3 x 5 x 5"'I3 x 13

2 x 4 x 4 x 6"'12 x 14

and

greater than
3 x 3 x 5 x 5'"13 x 13

2x4x4x6"'12xl4

and so forth to as close an approximation as we like.
12

14 BARROW. THE FUNDAMENTAL THEOREM OF THE CALCULUS

The so-called inverse-tangent problem consisted in finding the curve, given a law concerning

the behavior of the tangent. An early example was the search for loxodromes on the sphere,

which are curves intersecting the meridians at a given angle; this problem was originated by

Pedro Nunez and Simon Stevin in the sixteenth century. A later example of importance

was contained in a letter to Descartes written by Florimond De Beaune in 1639, which led

to the search for the curve of constant subtangent; see Descartes, Oeuvres, ed. C. Adam and

P. Tannery, Correspondance, II (Paris, 1898), 510-519, and Selection V.l. The next step

was the recognition that finding quadratures and solving inverse-tangent problems were

identical propositions—in other words, the discovery that the integral calculus is the inverse

of the differential calculus. Torricelli came to this understanding in his case of generalized

parabolas and hyperbolas, satisfying the equation x dy = ky dx; see E. Bortolotti, Archeion

12 (1930), 60-64. James Gregory (1638-1675), the great Scottish mathematician who died

so young, seems to have been the first to see the proposition in its generality, though still in

a geometric manner. This was in his Geometriae pars universalis (Padua, 1668); see James

Gregory tercentenary memorial volume, ed. H. W. Turnbull (London, 1939), where Gregory’s

work can be enjoyed in an English paraphrase. See also M. Dehn and E. D. Hellinger,

“Certain mathematical achievements of James Gregory,” American Mathematical Monthly

50 (1943), 149-163. We then find the fundamental theorem in the Lectiones geometricae

(London, 1670) by Isaac Barrow (1630-1677), in his day a famous theologian and from

1662 to 1670 professor of mathematics at Cambridge, where he was the first to occupy the

Lucasian chair. His most famous disciple was Isaac Newton, who succeeded him in his chair.

See P. C. Osmond, Isaac Barrow: his life and times (Society for Promoting Christian Knowl-

edge, London, 1944).

The Lectiones geometricae present, in 13 lectures, a curious collection of theorems, mostly

concerned with the finding of tangents, areas, and lengths of arcs. Barrow himself says in the

preface that he did not find the presentation very satisfactory, but instead of editing his

lectures he chose rather to send them forth “in Nature’s garb,” just as they were born. His

starting point is motion, and his early method of finding tangents is thus kinematic. He

then begins to use indivisibles, but with some caution, and at the end he arrives at the

method of differentiation, as used by Fermat, and at that of the characteristic (or dif-

ferential) triangle {dx, dy, ds). The method is thoroughly geometrical, and this makes it not

easy to recognize the importance of Barrow’s results. On the (partial) translation by

12 We now write T= lim
2 n _* oo

2x2x4x4x... (2n)(2n)

3x3x5x5x... (2n — l)(2n + 1)
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J. M. Child, The geometrical lectures of Isaac Barrow (Open Court, Chicago, London, 1916)
we base certain sections of Lectures X and XI which contain theorems equivalent to

ds

2

= dx2 + dy2 (rectification) and (djdx)
J* y dx = y (the fundamental theorem). The

notation is slightly modernized; see footnote 11.

LECTURE X

1.

Let AEG [Fig. 1] be any curve whatever, and AFI another curve so related
to it that, if any straight line EF is drawn parallel to a straight line given in

T

A

Fig. 1

position (which cuts AEG in E and AFI in F), EF is always equal to the arc AE
of the curve AEG

,

measured from A
;
also let the straight line ET touch the

curve AEG at E, and let ET be equal to the arc AE; join TF; then T

F

touches
the curve A FI.

The proof follows.

2. Moreover, if the straight line EF always bears the same ratio to the arc
AE, in just the same way FT can be shown to touch the curve A FI. 1

3. Let AGE [Fig. 2] be any curve, I) a fixed point, and AI

F

another curve
such that, if any straight line DEF is drawn through D, the intercept EF is

always equal to the arc AE; and let the straight line ET touch the curve AGE;
make TE equal to the arc AE; let TKF be a curve such that, if any straight

1 This is one of the many theorems by which Barrow passes from the knowledge of the
tangent of one curve to that of another by means of methods which originally are based on
motion (EF is moving parallel to itself), but eventually can be interpreted purely geo-
metrically. If E(x, y) and the ^-axis are in the EF direction, then EF = y + s (s = arc AE),
and F(x, y + s). Hence the slope of FT is

hence — =
dx J 1 + Here we have taken 'j- = tan <p, hence the X-axis is _|_ AF.
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line DHK is drawn through I), cutting the curve TKF in K and the straight

line TE in II, HK = HT\ then let FS be drawn to touch TKF at F; FS will

touch the curve AIF also. 2

4. Moreover, if the straight line EF always bears the same ratio to the arc

AE, the tangent to it can easily be found from the above and Lect. VIII, §8.

A number of similar theorems follow, and applications to some special curves (from a

straight line to a hyperbola, from a circle to a quadratix). Then Barrow says: “I add one
or two theorems, which it will be seen are of great generality, and not lightly to be passed

over.” Here they are:

11. Let ZGE [Fig. 3] be any curve of which the axis is VI) and let there be

perpendicular ordinates to this axis
(
VZ

,
PG, DE) continually increasing from

the initial ordinate VZ; also let VI

V

be a line such that, ifany straight line EDF
is drawn perpendicular to VD, cutting the curves in the points E, F, and VD in

D, the rectangle contained by DF and a given length R is equal to the inter-

cepted space VDEZ-, also let DE : DF = R : DT, and join [T and F\. Then TF
will touch the curve VI

F

.

3 For, if any point 1 is taken in the line VI

F

(first on
the side of F towards F), and if through it IG is drawn parallel to VZ, and IL is

parallel to VD, cutting the given lines' as shown in the figure; then LF : LK =
DF : DT = DE : R, or R x LF = LK x DE.

2 This is similar to Art 1, but now in polar form.
3 If the curve ZGE is given by y = f(x) and curve AIF by z = g(x), then Rz = JJ y dx,

and y : z = R : DT. The theorem that DT is tangent to the curve AIF gives y:z — R: z^

,

hence y = ^ Tc°
V ^ ~ dx ^

0

2/ ^x This therefore is, in geometrical form, the fundamental

theorem of the calculus. Figure 4 gives the text in facsimile.
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But, from the stated nature of the lines DF, LK, we have R x LF =
area PDEG: therefore LK x DE = area PDEG < DP x DE; hence
LK < DP < LI.

Again, if the point I is taken on the other side of F, and the same construction
is made as before, plainly it can be easily shown that LK > DP > LI.
From which it is quite clear that the whole of the line TKF lies within or

below the curve VIFI.
Other things remaining the same, if the ordinates, VZ. PG, DE, continually

decrease, the same conclusion is attained by similar argument; only one dis-

tinction occurs, namely, in this case, contrary to the other, the curve VI

F

is

concave to the axis VD.
Corollary. It should be noted that DE x DT — R x DF = area VDEZ.
12. From the preceding we can deduce the following theorem.
Let ZGE, VIE be any two lines so related that, if any straight line ED

F

is

applied to a common axis VD, the square on DF is always equal to twice the
space VDEZ; also take DQ, along VD produced, equal to DE, and join FQ;
then FQ is perpendicular to the curve VIF. i

I will also add the following kindred theorems.

13. Let AGEZ be any curve [Fig. 5], and D a certain fixed point such that
the radii, DA, DG, DE, drawn from D, decrease continually from the initial

radius DA

;

then let DKE be another curve intersecting the first in E and such
that, if any straight line DKG is drawn through D, cutting the curve AEZ in G
and the curve DKE in K, the rectangle contained by DK and a given length R
is equal to the area ADG; also let DT be drawn perpendicular to DE, so that
DT = 2R; join TE. Then TE touches the curve DKE.

Moreover, ifany point, K say, is taken in the curve DKE, and through it DKG
is drawn, and DG : DK = R:P; then, if DT is taken equal to 2P and TG is

joined, and also KS is drawn parallel to GT; KS will touch the curve DKE.

4 This shows how to construct the normal to the figure of Art. 11. Arts. 13 and 14 show
how the argument runs in terms of what we would call polar coordinates.
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7® L E C T. X.
Hujufmodi pluri quardam cogitaram hie inferere

(
veriim hate ex-

iftimo fufficere fubindicando modo, juxta quern, citra Calcnli mtlejfi-

am, mrvaruifitangentes exquirere licet, unaque conftrudiones de-

monftrare. Subjkiam tamen unum aut alteninj non afpernanda, ut vi-

4ctur l horemata perquam generalia,

•<
» v i v f

XI. SitlineaquatpiamZGE, cujus axis VD, ad quara impri-
mi« ann\ir.itap ivrnrmk’nilar#»« ( V 7 Pf*. H Pi ok initiA \/ 7 rnn

dam R aequale fpjtit refpcftivd intercept) V D E Z
;

fiat autem D E .
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}

hare curvam V 1

E

cominger.

Suroatur enim in Iinea Vi F pundum quodpiam I (illud prmto fu-

pra punftum F, verfus iniiiuin V) & per hoc ducanturred* IG ad
V Z, ac K. L ad V D parallel* (qua- Eneas expolitas fecent, ut rides’)

clique tumLF . LK:: (DF.DT::) DE.R, adeoque L F x

R = L K x D E. Eft autem (ex prsrftituta lineartim iftarum natura)

L F x R aequale fpatio P D E G . ergo LKxDErrPDtG “*a

DRxDE. UndeeftLK~3DP; vel-LKraLl.
Rurfus accipiatur quodvis pundum I, infra pnntftum F, rHiquaq;

fiant, uti prius
;

fimilique jam plane difeurfu eonftabit foreLK*DE
= PDEGc"DPxDE, unde jam erit LKc“ DP

,

vel LI. E
quibus iiquido paret totam redam T K F K intra (feu extra) curvam
V I F i exiftere. . •

‘

' - <\

liidem quoad carteta pofitis, Ci trdinntd.V Z, PG, D E, cJ-f. con-
tinue decrefcant, catkin conclulio ftmili ratiocinio colligetur . uni-

curo obvenit ‘Difcrimm, quod in hoc cafu (contra quam m priore)

lioea V I F concavas (was axi V D obvertar.

Ctr*l. Notetur DE x D T aequari fpatio-V D E Z.
i ;?

XII. Exinde jdeducitur hoc Th*orem»i Sint duz line* qairvis

Fig. in. ZGE, VKF ta rebtsr, ut adcommunem ipfarum axemVDap-
plicata quavi&redi E D F, ft femper quadratum ex D E sequale iu-

pUfpttia V D E Z
j
ftmatur autem D Q^= D E,& connedatuf F Q i

hate curvar VKF perpendicularis erit.

Concipiititr enim Jinea V IF, per F tranfiens, rafis qualena mqx
attigimus (cujus fciJicet ad V D applieatte ft habeant ut fpatia VDEZ

}

hoc eft ut quadrata ex applicatis a curva V KF in puefeatehypotheft )

Fig. 4
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Observe that Square on DG : Square on DK — 2R : DS.
Now, the above theorem is true, and can be proved in a similar way, even if

the radii drawn from D, DA, DG, DE, are equal (in which case the curve AGEZ
is a circle and the curve DKE is the Spiral of Archimedes), or if they continually

increase from A.

14. From this we may easily deduce the following theorem.

Let AGE, DKE [Fig. 6] be two curves so related that, if straight lines DA
,
DG

are drawn from some fixed point D in the curve DKE (of which the latter cuts

A
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the curve DKE in K), the square on DK is equal to four times the area ADG
;

then, if DH is drawn perpendicular to DG, and DK : DG = DG : DH; and HK
is joined; then HK is perpendicular to the curve DKE.
We have now finished in some fashion the first part, as we declared, of our

subject. Supplementary to this we add, in the form of appendices, a method for

finding tangents by calculation frequently used by us. Although I hardly know,

after so many well-known and well-worn methods of the kind above, whether

there is any advantage in doing so. Yet I do so on the advice of a friend; 5 and
all the more willingly, because it seems to be more profitable and general than

those which I have discussed.

Let AP, PM be two straight lines given in position [Fig. 7] of which PM cuts

a given curve in M, and let MT be supposed to touch the curve at M, and to

cut the straight line at T.

M

In order to find the length of the straight line PT, I set off an indefinitely

small arc, MN, of the curve; then I draw NQ, NR parallel to MP, AP; I call

MP = m, PT = t, MR = a, NR = e, and other straight lines, determined by
the special nature of the curve, useful for the matter in hand, I also designate by
name; also I compare MR, NR (and through them, MP, PT) with one another

by means of an equation obtained by calculation; meantime observing the fol-

lowing rules. 6

Rule 1. In the calculation, I omit all terms containing a power of a or e, or

products of these (for these terms have no value). 7

Rule 2. After the equation has been formed, I reject all terms consisting of

letters denoting known or determined quantities or terms which do not contain

a or e (for these terms, brought over to one side of the equation, will always be

equal to zero).

Rule 3. I substitute m (or MP) for a, and t (or PT) for e. Hence at length the

quantity of PT is found.

Moreover, if any indefinitely small arc of the curve enters the calculation, an
indefinitely small part of the tangent, or of any straight line equivalent to it (on

5 This friend probably is Newton, to whom Barrow refers by name in the preface, saying
that Newton has helped him in preparing the book, adding some things from his own work.

6 This introduces the “characteristic triangle” (NR, RM, NM) or
(
dx,dy,ds ), on the

advice, it seems, of Newton.
7 This neglecting of terms of higher order reminds us of Fermat (Selections IV.7, 8) and

also of Newton’s fluxion theory (Selection V.7).
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account of the indefinitely small size of the arc) is substituted for the arc. But
these points will be made clearer by the following examples.

Barrow gives five examples of this method of the characteristic triangle. Two of them
are the folium of Descartes x3 + y

3 = axy (written by Barrow AP cub + PM cub =
AX x AP x PM-, he calls the curve La Galande) and the quadratrix; the others are the

curves x3 + y
3 = a3

,
r = a tan 8, and y = a tan x. The result of the differentiation of

y = a tan x is shown to be (in our notation, of course), dyjdx = a sec 2
x.

The next lecture deals with integration.

LECTURE XI

1. If VH [Fig. 8] is a curve whose axis is VI), and HD is an ordinate perpen-

dicular to VD, and rpZip is a line such that, if from any point chosen at random
on the curve, say E, a straight line EP is drawn normal to the curve, and a

straight line EAZ perpendicular to the axis, AZ is equal to the intercept AP)
then the area VDificp will be equal to half the square on the line DH.

For if the angle HDO is half a right angle, and the straight line VD is divided

into an infinite number of equal parts at A, B, C, and if through these points
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straight lines EAZ, FBZ, GCZ, are drawn parallel to HD, meeting the curve in

E, F, G; and if from these points are drawn straight lines El Y, FKY, GLY,
parallel to V

D

(or II

0

) ;
and if also EP, FP, GP, HP are normals to the curve,

the lines intersecting as in the figure; then the triangle HLG is similar to the

triangle PDH (for, on account of the infinite section, the small arc HG can be
considered as a straight line).

Hence,HL:LG = PD : DH, or HL x DH = LG x PD; that is,

HL x HO = DC x Dip.

By similar reasoning it may be shown that, since the triangle GMF is similar

to the triangle PCG, LK x LY = CB x CZ
;
and in the same way,

K1 x KY = BA x BZ, ID x IY = AV x AZ.

Hence it follows that the triangle DHO (which differs in the slightest degree

only from the sum of the rectangles HL x HO + LK x LY + KI x
Ki + ID x IY) is equal to the space VDipcp (which similarly differs in the

least degree only from the sum of the rectangles DC x Dip + CB x CZ + BA x
BZ + AV x AZ); that is.

DH2
!
2 = area VDip<p.

A lengthier indirect argument may be used; but what advantage is there? 8

2. With the same data and construction as before, the sum of the rectangles

AZ x AE, BZ x BF, CZ x CG, etc., is equal to one-third of the cube on the

base DH. 9

For, since HL: LG = PD:DH = PD x DH: DH2
;
therefore HL x DH2

= LG x PD x DH or LH x HO2 = DC x Dip x DH; and, similarly,

LK x LY2 =CB x CZ x CG, KI x KY2 = BA x BZ x BF, etc.

But the sum HL x HO2 + LK x LY2 + KI x KY2 + etc. = Z>H3/3;and
the proposition follows at once.

3. By similar reasoning, it follows that

the sum of AZ x AE2
,
BZ x BF2

,
CZ x CG2

, etc. = DH*/4;

the sum of AZ x AE3
,
BZ x BF3

,
CZ x CG3

,
etc. = DH3

/5;

and so on.

4. Hence we may deduce the following important theorems.

Let VDipip be any space of which the axis VD is equally divided [as in Fig. 7];

8 If we measure x along VP and y in the direction of EA, then AP = AZ = y dyjdx and
the theorem states that

when D has the coordinates
(x0 , y0 ). This is a form of change of independent variable from

x to y.

9 That is, f
X
° y

2 ^-dx = f
y
° y

2 dy = — •

Jo * dx Jo
* *

3
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then if we imagine that each of the spaces VAZcp, VBZcp, VCZcp, etc., is multi-

plied by its own ordinate AZ, BZ, CZ, etc., respectively, the sum which is

produced will be equal to half the square of the space VDt/np .

10

Several more examples are given, concerning the area of a quadrant of a circle and of a

parabolic segment and the volume of a surface of rotation, after which comes the following

theorem

:

10. Again, if VII [Fig. 9] is a curve whose axis is VD and base DH, and DZZ
is a curve such that, if any point such as E is taken on the curve VH and ET is

drawn to touch the curve, and a straight line EIZ is drawn parallel to the axis,

then IZ is always equal to AT; in that case, I say, the space DUO is equal to

the space VHD.
This extremely useful theorem is due to that most learned man, Gregory of

Aberdeen: we will add some deductions from it ... 11

10 That is,

Art. 5 shows that
rvo

V
112 dy = $y%

12
.

Jo

11 When D is taken as origin, DI = x, DA — y, then AT = IZ = x dyjdx, and if we
write H(x0 , 0), F(0, y0 ), then

So°
xdy = So°

ydx -

Barrow refers to James Gregory, who, in 1668, had arrived independently at the funda-
mental theorem.
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Barrow goes on to give more examples and Art. 19 arrives again at the fundamental
theorem, now in the form converse to that given in Lecture X, Art. 11 : if the curve AM

B

is

given by z = f{x), and the curve KZL by y = f^x), zdx/dz:z = R:y, then
J y dx =

R
|

dz, or
(
y dx = Rz.

We list here some of Barrow’s notations which we have modified: A B, A is greater

than B; A
1

B, A is less than B; A . B : :C . D, A : B = C :D; Aq, the square of A, for

instance, in Lecture X, Art. 13, square on DO is written DGq\ Ac or A cub, the cube of A;
DHqq the fourth power of DH. We have kept his symbol of multiplication, A x B.

We end with a word of caution. Despite the fact that, in order to understand these

seventeenth-century mathematicians, we are inclined to translate their reasoning into the
notation and language with which we are familiar, we must constantly be aware that our
point of view is not equivalent to theirs. They saw geometric theorems in the sense of

Euclid, where we see operations and calculating processes. At the same time, just because
these mathematicians applied their geometric notions in an attempt to transcend the static

character of classical mathematics, their geometric thought has a richness that may easily

escape observation in the modern transcription. If we were to rewrite Euclid in the notation

of analytic geometry we would obtain a body of knowledge with a character different from
that of Euclid and, despite all the advantages that the algebraic computations would bring

,

we would lose some of the more subtle and esthetic qualities of Euclid.

15 HUYGENS. EVOLUTES AND INVOLUTES

The search for reliable clocks, a necessity for scientific navigation and geography as well as

for theoretical astronomy, led Christiaan Huygens (1629-1695), a Dutch patrician and a
founding member of the French Academy of Sciences (1666), to the invention of the
pendulum clock (the idea of which seems to have already occurred to Galilei). Huygens
described this invention in the Horologium oscillatorium (Paris, 1673; reprinted, with French
translation, in Oeuvres completes de Christiaan Huygens, XVIII, 68-368). This book, in its

five parts, contains a number of important discoveries in mechanics and mathematics, so

that, with the books of Cavalieri and Wallis (see Selections IV.5, 6, 13), it is a landmark on
the path that led to the invention of the calculus.

After describing his pendulum clock in Part I, Huygens deals in Part II with “The fall of

heavy bodies and their cycloidal movement.” Here we find a theory of the cycloid and,
based on it, the following theorem on a heavy point moving on a cycloid in a field of

gravity:

Proposition XXV. On a cycloid with a vertical axis whose vertex is below,

the times of descent in which a mobile point, starting from rest at an arbitrary

point of the curve, reaches the lowest point, are all equal, and have to the times

of the vertical fall along the total axis of the cycloid a ratio equal to that of the
semicircumference of a circle to that of the diameter [in our terms, as n :2],

In other words, the cycloid is a tautochrone. From this theorem Huygens obtains the
tautochronic pendulum, which has a period independent of its amplitude. This property of



264
|

IV ANALYSIS BEFORE NEWTON AND LEIBNIZ

the cycloid leads him to the discovery that the evolute of the cycloid is also a cycloid, and

then, in Part III of the book, to the general theory of evolutes and involutes of plane

curves.

The Horologium oscillatorium can also be studied in a German translation in Ostwald’s

Klassiker, No. 192 (Engelmann, Leipzig, 1913).

Here follows a translation of the beginning of Part III, entitled “On the evolution and
dimension of curved lines.”

Definition I. A curve is said to be curved [inflexa] to one side, if all its tan-

gents touch it just on that side. If it has some parts straight, then these, con-

tinued at both ends, are themselves regarded as tangents.

Definition II. When two curves of this kind pass through the same point,

and when the convexity of one is directed toward the concavity of the other,

as the curves ABC and ADE [Fig. 1], then we shall call both “concave
[
cavae]

to the same side.”

E

Definition III. When we consider that a thread or flexible line is laid along a

curve concave to one side, and when we remove one end from it while the other

end of the thread stays on the curve in such a way that the developed part

remains taut, then this end of the thread will clearly describe another curve;

this curve is called an involute
[descripta ex evolutione]}

Definition IV. The curve, however, along which the thread has been laid may
be called the evolute

[
evoluta ]. In the figure ABC is the evolute, ADE the in-

volute of ABC, for if the end of the thread has come from A to D, then the

straight part DB of the thread will be taut, while the other part BC still lies

along the curve. It is clear that DB is tangent to the evolute at B.

Proposition I. Every tangent of the evolute intersects the involute at right

angles

:

Let AB [Fig. 2] be the evolute, AH its involute. Let the straight line FDC,
tangent to curve ADB at D, intersect the curve ACH at C. I claim that it

1 The term involute, a curious English construction for the more natural “evolvent” (as

in German: Evolute, Evolvente; in French: developpee, developpante

)

appears first in Charles
Hutton’s Mathematical dictionary (London, 1796), according to the Oxford English Dic-
tionary. This gives for the first English appearance of the term evolute 1730-36.
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intersects the curve at right angles, that is, if we construct on CD the perpen-
dicular CE, then this line should touch the curve ACII at C. Indeed, since the
straight line DC is tangent to the evolute at D, it clearly represents the position

of the thread at the moment when its end has come to C

.

When therefore we
prove that the thread while describing the whole curve ACH can reach the line

CE only at the point C, we shall have proved that CE is tangent to the curve
ACH at the point C.

Let us take on AC another point II different from C, and let us consider first

the case in which H is farther removed than C from the .starting point A of the

evolution. Let the free part of the thread have the position HG, when its end is

at H. The line HG is therefore tangent to the curve A D at G. While the end of

the thread describes the arc CH, the thread evolves itself away from arc DO

.

Hence CD will intersect the line HG if extended beyond Z); say at F. Let GH
intersect the line CE at E. We then have2

DF + FG > DG,

whether DG be a straight or a curved line. If we add to both sides the straight

segment DC, then we obtain

CF + FG > CD + DG.

In connection with the evolution we have

CD + DG = HG.

Hence the sum CG + FG will also be > HG, and if we subtract from both sides

the segment FG, then we find that

But we have

CF > HF.

FE > FC,

2 Huygens does not use the Harriot symbol > , but uses words: “Quia igitur duae simul
DF, FG, majores sunt quam DG."
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since in the triangle FCE the angle C is right. Hence we have a fortiori

FE > FH.

From this it follows that the thread on this side of the point C no longer

intersects the line CE.

Now let the point H [Fig. 3] be closer to the starting point A than the point C.

Let HO be the position of the thread at the moment when its end is at H. Let

us draw the lines DG and DH, of which the last one meets the straight line CE
at E. It is clear that the straight line DG cannot be on the continuation of HO,

and that HOD is therefore a triangle. Now, since

DG < DKG,

the sign = holding for the case where the part DG of the evolute is straight, we

will find, adding GH on both sides, that

DG + GH ^ DKG + GH,

or

But

DG + GH ^ DC.

DH < DG + GH,

hence DH is a fortiori < DC. But DE > DC, since in triangle DCE the angle C
is right. Hence DH is much more < DE. The point H, the end of the thread GH,

is therefore situated inside the angle DCE. From this it follows that between A
and C the end ofH never gets as far as CE. Hence CE touches the curve AC at C,

so that DC, to which CE has been constructed as a perpendicular, cuts the curve

at right angles. Q.E.D. 3

3 W© see that Huygens proves that a line is tangent to the curve by using the method of

the ancients; see our commentary to Selections IV. 8, 10.
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We give the next three propositions without the proof, which is similar in character to

that given above for Proposition I.

Proposition II. Every curved line segment, concave in one direction, as ABD
[Fig. 4], can be divided in so many parts that if we draw the chords that subtend
every one of the arcs, as AB, BC , and CD, and then draw the tangents AN,

BO, CP from every one of the points of division and also from the end of the

curve, till each of them meets the normal to the curve at the next point of

division {BN, CO, DP are the normals), then every chord will have to the corre-

sponding normal (AB to BN, BC to CO, CD to PD) a ratio superior to any given
ratio. 4

Proposition III. Two curved lines curved both in the same direction and
concave in that same direction cannot issue from the same point in such a
mutual position that every line normal to the one is also normal to the other.

Huygens proves that if ACE and AGK [Fig. 5] are such curves, and KE is a common
normal, then the proposition that all normals at the points G of AGK are also normals to
ACE leads to an absurdity.

K

Proposition IV. If from a point pass two curved lines curved both in the same
direction and concave in the same direction, and in such a mutual position that

the tangents to the one of them meet those of the other at right angles, then this

other curve will be the evolute of the first from the common point on.

4 In our words: the segments on the normals are of higher order of infinity than the
chords. See Selection V.5.
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Proposition V. If a straight line touches a cycloid at its vertex and we con-

struct on this straight line as base another cycloid, similar and equal to the first,

then, beginning at the vertex mentioned, an arbitrary tangent to the inferior

cycloid will be normal to the superior cycloid.

Let us suppose that the straight line AG [Fig. 6] touches the cycloid at its

vertex A and that on this line as base is constructed another cycloid AEF with

Fig. 6

M F

vertex F. Let BK be a tangent to the cycloid ABC. I claim that this tangent,

continued to the cycloid AEF, will meet it at right angles. Indeed, let us de-

scribe about AD, the axis of the cycloid ABC, the generating circle AHD,
which intersects BH, parallel to the base, at H. Let us draw the line HA. Since

BK is tangent to the cycloid at B, it is parallel to this line HA, hence AHBK is

a parallelogram and AK = HB, that is, equal to the arc AH. 5 Let us now de-

scribe the circle KM, equal to the generating circle AHD, tangent to the base

AG at K and intersecting the continued line BK at E. Since BKE is parallel to

AH, and hence EKA = KAH, it is clear that the continued line BK cuts from

the circle KM an arc equal to the arc which AH cuts from the circle AHD. The

arc KE is therefore equal to the arc AH, that is, to the line HB, hence to the

line KA. But it follows from this equality, from a property of the cycloid (since

the generating circle MK is tangent to line AG at K), that the point which

describes the cycloid [AEF~\ has passed through E. The line KE therefore meets

the cycloid at E at right angles, that is, KE is no other line than the continua-

tion of BK. Q.E.D.

Proposition VI. By the evolution of a half-cycloid, beginning at the summit,

another half-cycloid is described equal and similar to the first, whose base

coincides with the straight line that is tangent to the cycloid evolved at its

vertex.

In the following propositions of Part III Huygens investigates many other evolutes,

notably those of conic sections, and uses this information for some computations of length

6 In this proof Huygens uses several properties of the cycloid that he has established in

Part II of his book. See also Selection IV. 10.
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and area. This leads to the general theorem on the construction of evolutes for “geo-
metrical” curves .

6

Part I \ of Huygens book, On centers of oscillation,” contains the theory of the
oscillating bodies. The short Part V deals with centrifugal force and another clock
construction.

The establishment of this theorem is the beginning of a series of investigations on curves
that are congruent or similar to their evolutes. The search leads to logarithmic spirals,
epicycloids, and hypocycloids. See Oeuvres completes de Christiaan Huygens, XVIII, 40-41,
and C. A. Crommelin and W. van der Woude, Simon Stevin 30 (1954), 17-24. As to “geo-
metric curves, Descartes, in the second book of his Geometrie, called curves “geometric”
if they admit of precise and exact measurement,” so that all their points must bear a
definite relation to all points of a straight line, a relation to be expressed by means of a single
equation, which then can be of different degrees (see Selection III.4). For such curves
Huygens expresses, in geometric form, the formula for the radius of curvature which later
Jakob Bernoulli would express by z = dsa

: dy d dx, a formula equivalent to the one familiar
to us in our calculus texts; see “Curvatura laminae elasticae . . . Radii circulorum oscula-
tium in terminis simplicissimis exhibiti . . .,” Acta Eruditorum (June 1694), 262-266 (Opera
II, 576-600). See further Selection V.23.
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The final discovery of the calculus required the assimilation of the geometric methods of

Cavalieri and Barrow with the analytic methods of Descartes, Fermat, and Wallis; it also

required the understanding of the relation between the search for tangent constructions and

quadratures. This fundamental step was taken by Isaac Newton (1643-1727) and Gottfried

Wilhelm Leibniz (1646-1716). Newton’s “golden period” of discovery fell between 1664

and 1668 (see Selection III. 8); Leibniz also had such a “golden period,” from 1672 to 1676,

when he resided in Paris, met with the twenty-one-years older Huygens, and twice made
trips to London to confer with British scientists. In those years he discovered his form of the

calculus. Newton’s discovery of the calculus thus came before that of Leibniz, but Leibniz

published his first (1684 and after). Newton, after hints in his Principia (1687) and in a new
edition of Wallis’s Algebra in the Opera mathematica of Wallis (Oxford, 1693), did not

publish his calculus until 1704 (see Selection V.7), after Leibniz’s discoveries had already

been presented in L’Hopital’s textbook (1696).

The development of the calculus in Leibniz’s sense proceeded fast through the work of

Leibniz himself, the brothers Bernoulli, Eider, and other continental mathematicians.

Newton’s calculus, the so-called theory of fluxions, had a much less spectacular progress in

the works of Taylor, Maclaurin, and other British mathematicians. The struggle over

priority, started during the lifetime of Newton and Leibniz (the opening shot in this war

was fired by the mathematician-adventurer-mystic Nicolas Fatio de Duillier in 1699), did

not help to reconcile the two points of view and their adherents. Not until the early years of

the nineteenth century was the conflict resolved in the sense that leading mathematicians

in the English-speaking countries began to adopt the Leibniz notation, primarily through

the impact of the work done by Laplace (though the notation x for the time derivative of x

has persisted to the present day). From that time on the priority struggle has become a

priority question, and thus a comparatively minor chapter in the whole history of the origin

of the calculus. New light is constantly being shed on this history through the publication of

documents hitherto available only in archives, such as papers and letters of Newton,

Oldenburg, and Mersenne. Literature on this question is found in J. E. Hofmann, Geschichte

der Mathematik, III (Sammlung Goschen 882; De Gruyter, Berlin, 1957), 38; a short survey

of the struggle is given in J. Q. Fleckenstein, Der Prioritdtsstreit zwischen Leibniz und

Newton (Elemente der Mathematik, Beiheft 12; Birkhaiiser, Basel, Stuttgart, 1956). The

bibliography in R. C. Archibald, “Outline of the History of Mathematics,” American

Mathematical Monthly 56, No. 1. Part II (January 1949), 114 pp., is very helpful, not only

on Newton and Leibniz, but also on the whole of the history of mathematics.

270



LEIBNIZ. HIS DIFFERENTIAL CALCULUS 1
|

271

1 LEIBNIZ. THE FIRST PUBLICATION OF HIS DIFFERENTIAL
CALCULUS

Gottfried Wilhelm Leibniz (1646-1716), born in Leipzig, studied philosophy and law at

Leipzig and Jena, and became a diplomatic counselor in the service of the elector of

Mayence. This allowed him to spend the years 1672-1676 in Paris, where he developed many

of his mathematical ideas, including the calculus, under the personal influence of Huygens

and by studying Descartes, Pascal, and British mathematicians. From 1676 to his death he

lived most of the time in Hanover as a librarian in the service of the kings of Hanover.

The manuscripts in which Leibniz wrote down his discoveries during his Paris stay were

published by Gerhardt and have been translated into English by J. M. Child, The early

mathematical manuscripts of Leibniz (Open Court, Chicago, London, 1920), with critical and

historical notes. Very interesting is the note, dated October 26, 1675, with the first utiliza-

tion of the signs
J ,

signifying Cavalieri’s “omnes lineae,” and d, originally placed in the

denominator to balance dimensions. Contact with British mathematicians, who considered

Leibniz somewhat of an upstart, remained difficult, but during 1676 Leibniz succeeded,

through the intermediation of Henry Oldenburg (1615-1677), German-born secretary of the

Royal Society, in obtaining two letters from Newton, containing many of his results on

series, but little on the calculus (see Selection V.4).

After settling in Hanover, Leibniz became a collaborator on the new Leipzig periodical

Acta Eruditorum (founded 1682, after 1732 entitled Nova Acta Eruditorum, discontinued

1782; 117 volumes), in which in 1682 he announced the existence of his calculus and in 1684

published the first account.

On Leibniz’s formative years see J. E. Hofmann, Die Entwicklungsgeschichte der Leib-

nizschen Mathematik wahrend des Aufenthaltes in Paris (Leibnizens Verlag, Munich, 1949).

Here follows a translation from the Latin of Leibniz’s paper of 1684, which opens the

modern period in the history of the calculus. The original can be found in Acta Eruditorum 3

(1684), 467-473; it has been reprinted in Leibniz, Mathematische Schriften, Abth. 2, Band

III (1863); this is also Dritte Folge, Band VII, of Leibnizens gesammelte Werke, ed. G. H.

Pertz, so that this book is sometimes quoted as Band III and sometimes as Band VII. The

significant title is Nova methodus pro maximis et minimis, itemque tangentibus, quae nec

fractas nec irrationales quantitates moratur, et singulare pro illi calculi genus (A new method

for maxima and minima as well as tangents, which is impeded neither by fractional nor by

irrational quantities, and a remarkable type of calculus for this).

The paper contains the general rules for differentiation, and it uses differentials (called

differentiae, that is, differences) rather than derivatives. It has the d-notation. The dif-

ferentials dx, dv are defined as finite increments, and it is not explained why in d(xv) =

x dv + v dx the term dx dv is neglected. The paper contains the condition dv = 0 for a

maximum or minimum, and d dv — 0 for a point of inflection. It introduces the term

“differential calculus,” but, although v, or y, is taken as a function of a;, the term “function”

does not appear in this paper. To find this term we must consult a paper by Leibniz of 1692;

see note 1 and Selections V.6, 9, 16.

Before introducing the term calculus differentialis, Leibniz used the expression methodus

tangentium directa. For the methodus tangentium inversa or calculus summatorius (the
J

is

derived from S for summatio) Leibniz and Johann Bernoulli, during 1698, introduced the

term calculus integralis-, the term integral appears already in a paper by Jakob Bernoulli of

1690 (see Selection V.2).
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There exists a German translation of Leibniz’s paper of 1684 by G. Kowalewski in
Ostwald’s Klassiker, No. 162 (Engelmann, Leipzig, 1908). A partial English translation by
Evelyn Walker is given in Smith, Source Book, 619-626, and an Italian translation in
G. Castelnuovo, Le origini del calcolo infinitesimale nell’ era moderna (Zanichelli Bologna
1938), 147-160.

A NEW METHOD FOR MAXIMA AND MINIMA AS WELL AS TANGENTS,
WHICH IS NEITHER IMPEDED BY FRACTIONAL NOR IRRATIONAL
QUANTITIES, AND A REMARKABLE TYPE OF CALCULUS FOR THEM,
BY G.W.L. [FIG. 1]

Let an axis AX [Fig. 2; simplified from Leibniz’s figure] and several curves such
as VV, WW, YY, ZZ be given, of which the ordinates VX, WX. YX, ZX,
perpendicular to the axis, are called v, w, y, z respectively. The segment AX,
cut off from the axis [abscissa ab axe 1

]
is called x. Let the tangents be VB, WC,

YD, ZE, intersecting the axis respectively at B, C, D, E. Now some straight

line selected arbitrarily is called dx, and the line which is to dx as v (or w, or y,
or z) is to XB (or XG, or XD, or XE) is called dv (or dw, or dy, or dz), 2 or the
difference 3 of these v (or w, or y, or z). Under these assumptions we have the
following rules of the calculus.

If a is a given constant, then da = 0, and d(ax) = a dx. 1 f y = v (that is, if

the ordinate of any curve FT is equal to any corresponding ordinate of the
curve VV), then dy = dv. Now addition and subtraction

:

if z — y + w + z = v,

then d(z — y + w + x) = dv = dz — dy + dw + dx. Multiplication: d{xv) =
x dv + v dx, or, setting y = xv, dy = x dv + v dx. It is indifferent whether we
take a formula such as xv or its replacing letter such as y. It is to be noted that
x and dx are treated in this calculus in the same way as y and dy, or any other

indeterminate letter with its difference. It is also to be noted that we cannot
always move backward from a differential equation without some caution,

something which we shall discuss elsewhere.

1 Note the Latin term abscissa. This term, which was not new in Leibniz’s day, was made
by him into a standard term, as were so many other technical terms. In the article “De
linea ex lineis numero infinitis ordinatim ductis inter se concurrentibus formata . . .

,” Acta
Eruditorum 11 (1692), 168-171 (Leibniz, Mathematische Schriften, Abth. 2, Band I (1858),
266-269), in which Leibniz discusses evolutes, he presents a collection of technical terms.
Here we find ordinata, evolutio, differentiare, parameter, differentiabilis, functio, and ordinata
and abscissa together designated as coordinatae. Here he also points out that ordinates may
be given not only along straight but also along curved lines. The term ordinate is derived
from rectae ordinatim applicatae, “straight lines designated in order,” such as parallel lines.
The term functio appears in the sentence: “ the tangent and some other functions depending
on it, such as perpendiculars from the axis conducted to the tangent.”

2 When the subtangent—a term Leibniz used in a paper in the Acta Eruditorum (1694;
Mathematische Schriften, Abth. 2, Band I, 306), though it may be older—is denoted by s,

Leibniz defines dy -.dx = y :s, or s = y \dy\dx. We may express this by saying that Leibniz
takes the derivative (geometrically, in the form of the tangent) without further definition,
and defines the differentials in terms of the derivative.

3 Leibniz uses the term differentia and conceives it as a finite line segment. What we now
call differential would long after Leibniz often be called difference. Leibniz also uses other
terms. As to the meaning of the differentials, see the end of this selection.
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Fig. 1. The first page of Leibniz’s paper, Acta Eruditorum 3 (1684), 467.
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Now division-, d- or
V

The following should be kept well in mind about the signs

A

When in the

calculus for a letter simply its differential is substituted, then the signs are pre-

served; for z we write dz, for — z we write — dz, as appears from the previously

given rule for addition and subtraction. However, when it comes to an explana-

tion of the values, that is, when the relation of z to x is considered, then we can
decide whether dz is a positive quantity or less than zero (or negative). When the

latter occurs, then the tangent ZE is not directed toward A, but in the opposite

direction, down from X. This happens when the ordinates z decrease with

increasing x. And since the ordinates v sometimes increase and sometimes
decrease, dv will sometimes be positive and sometimes be negative; in the first

case the tangent VB is directed toward A, in the latter it is directed in the

opposite sense. None of these cases happens in the intermediate position at M,
at the moment when v neither increases nor decreases, but is stationary. Then
dv = 0, and it does not matter whether the quantity is positive or negative,

since +0 = — 0. At this place v, that is, the ordinate LM, is maximum (or, when
the convexity is turned to the axis, minimum), and the tangent to the curve at

M is directed neither in the direction from X up to A, to approach the axis, nor

down to the other side, but is parallel to the axis. When dv is infinite with

respect to dx, then the tangent is perpendicular to the axis, that is, it is the

ordinate itself. When dv = dx, then the tangent makes half a right angle with the

axis. When with increasing ordinates v its increments or differences dv also

4 The ambiguity in signs is due to the fact that s is taken positive. Systematic discrimina-
tion between positive and negative senses in analytic geometry came only with Monge and
Mobius in the early nineteenth century.

(

ifH) dz -
±v dy + y dv

yy
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increase (that is, when dv is positive, d dv, the difference of the differences, is

also positive, and when dv is negative, d dv is also negative), then the curve

turns toward the axis its concavity, in the other case its convexity ,

5 Where the

increment is maximum or minimum, or where the increments from decreasing

turn into increasing, or the opposite, there is a point of inflection ,

6 Here con-

cavity and convexity are interchanged, provided the ordinates too do not turn

from increasing into decreasing or the opposite, because then the concavity or

convexity would remain. However, it is impossible that the increments continue

to increase or decrease, but the ordinates turn from increasing into decreasing,

or the opposite. 7 Hence a point of inflection occurs when d dv = 0 while neither

v nor dv = 0. The problem of finding inflection therefore has not, like that of

finding a maximum, two equal roots, but three. This all depends on the correct

use of the signs.

Sometimes it is better to use ambiguous signs, as we have done with the

division, before it is determined what the precise sign is. When with increasing

, . , , , , . . 7 v ± v dy + y dv
x v\y increases (or decreases), then the ambiguous signs in a - — —
must be determined in such a way that this fraction is a positive (or negative)

quantity. But + means the opposite of + ,
so that when one is + the other is —

or vice versa. There also may be several ambiguities in the same computation,

v V x
which I distinguish by parentheses. For example, let - + - + - = w; then we

must write

± v dy + y dv
+ ( ± )y dz

( + )
z dy

+
({±))x dv((+))vdx = ^

yy zz

so that the ambiguities in the different terms may not be confused. We must

take notice that an ambiguous sign with itself gives + ,
with its opposite gives

—
,
while with another ambiguous sign it forms a new ambiguity depending on

both.

Powers. dxa = axa “ 1 dx; for example, dx3 = 3x2 dx. d—=—
^a _^ ;

for

example, if w = -L then dw = — -

x3

Roots, dx'/

x

a = \ dxV

x

a b (hence dVy = ^
2’Vy

for in this case a = 1,6 = 2),

therefore
^
V

x

a h = \^/

y

\ but y
1

is the same as -
;
from the nature of the

y
2 IT

!

2
/l 1 ,1

exponents in a geometric progression, and ^ ,

a —j=. = ^ ine

law for integral powers would have been sufficient to cover the case of fractions

5 Leibniz has “concavity” and “convexity” interchanged.
6 Leibniz’ term is punctum flexii contrarii (point of opposite flection). On this term see

T. F. Mulcrone, The Mathematics Teacher 61 (1968), 475-478.
7 There seems to be something wrong here: when y = x2

, dy = 2x dx; then, when x passes

from negative to positive (dx > 0 ), dy increases while y first decreases and then increases.

However, see note 4.
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as well as roots, for a power becomes a fraction when the exponent is negative,
and changes into a root when the exponent is fractional. However, I prefer to
draw these conclusions myself rather than relegate their deduction to others,

since they are quite general and occur often. In a matter that is already com-
plicated in itself it is preferable to facilitate the operations.

Knowing thus the Algorithm (as I may say) of this calculus, which I call

differential calculus, all other differential equations can be solved by a common
method. We can find maxima and minima as well as tangents without the
necessity of removing fractions, irrationals, and other restrictions, as had to be
done according to the methods that have been published hitherto. The demon-
stration of all this will be easy to one who is experienced in these matters and
who considers the fact, until now not sufficiently explored, that dx, dy, dv, dw, dz
can be taken proportional to the momentary differences, that is, increments or
decrements, of the corresponding x, y, v, w, z. To any given equation we can
thus write its differential equation. This can be done by simply substituting for

each term (that is, any part which through addition or subtraction contributes
to the equation) its differential quantity. For any other quantity (not itself a
term, but contributing to the formation of the term) we use its differential

quantity, to form the differential quantity of the term itself, not by simple
substitution, but according to the prescribed Algorithm. The methods published
before have no such transition. They mostly use a line such as DX or of similar
kind, but not the line dy which is the fourth proportional to DX, DY, dx—
something quite confusing. From there they go on removing fractions and irra-

tionals (in which undetermined quantities occur). It is clear that our method
also covers transcendental 8 curves—those that cannot be reduced by algebraic

computation, or have no particular degree—and thus holds in a most general
way without any particular and not always satisfied assumptions.

We have only to keep in mind that to find a tangent means to draw a line that
connects two points of the curve at an infinitely small distance, or the continued
side of a polygon with an infinite number of angles, which for us takes the place
of the curve. This infinitely small distance can always be expressed by a known
differential like dv, or by a relation to it, that is, by some known tangent. In
particular, if y were a transcendental quantity, for instance the ordinate of a
cycloid, and it entered into a computation in which z, the ordinate of another
curve, were determined, and if we desired to know dz or by means of dz the
tangent of this latter curve, then we should by all means determine dz by means
of dy, since we have the tangent of the cycloid. The tangent to the cycloid itself,

if we assume that we do not yet have it, could be found in a similar way from
the given property of the tangent to the circle.

Now I shall propose an example of the calculus, in which I shall indicate

division by x :y, which means the same as x divided by y, or-- Let the first or

6 This may be the first time that the term “transcendental” in the sense of “nonal-
gebraic” occurs in print.

9 From this suggestion by Leibniz dates the general adoption of this notation; see J.
Tropfke, Oeschichte

,
3rd ed., II (1933), 30. See also the reference to Mengoli in G. Castel-

nuovo, Le origini del calcolo infinitesimale nelVera moderna, 153.
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given equation be 10 x
: y + (

a + bx)(c — xx) : (
ex + fxx)

2 + axVgg + yy + yy :

Vhh + lx + mxx = 0. It expresses the relation between x and y or

between AX and X Y, where a
,
b, c, e,f, g, h are given. We wish to draw from

a point Y the line Y

D

tangent to the curve, or to find the ratio of the line DX
to the given line XY. We shall write for short n = a + bx, p — c — xx,

q = ex + fxx, r = gg + yy, and s = hh + lx + mxx. We obtain x
: y + np :

qq + axVr + yy : Vs = 0. which we call the second equation. From our calculus

it follows that

d(x: y) = (±xdy + y dx) -.yy,
11

and equally that

d(np
: qq) = [( + )

2np dq ( + )
q(n dp + p dn)\ :q

3
,

d(axVr) = +axdr: 2Vr + a dxVr,

d(yy.Vs) = ((±))yyds (( + )) 4ys dy : 2sVs.

All these differential quantities from d(x:y) to d(yy : Vs) added together give

0, and thus produce a third equation, obtained from the terms of the second

equation by substituting their differential quantities. Now dn = b dx and

dp = —2x dx, d = e dx + 2fx dx, dr = 2y dy, and ds = l dx + 2mx dx. When
we substitute these values into the third equation we obtain a fourth equation,

in which the only remaining differential quantities, namely dx, dy, are all out-

side of the denominators and without restrictions. Each term is multiplied either

by dx or by dy, so that the law of homogeneity always holds with respect to

these two quantities, however complicated the computation may be. From this

we can always obtain the value of dx'.dy, the ratio of dx to dy, or the ratio of the

required DX to the given XY. In our case this ratio will be (if the fourth

equation is changed into a proportionality)

:

+ x:yy — axy : Vr
( + ) 2y : Vs

divided by

+ 1
: y ( ± ) (2npe + 2fx )

: q
3
(+ )

(-2nx + pb)
: qq

+ aV

r

(( + )) yy(l + 2mx) : 2sVs.

Now x and y are given since point Y is given. Also given are the values of

n, p, q, r, s expressed in x and y, which we wrote down above. Hence we have

obtained what we required. Although this example is rather complicated we

10 We have retained Leibniz’ notation : but substituted parentheses for superscript bars:

Leibniz writes

x:y + a + bxc xx : quadrat, ex + fxx + axVgg + yy + yy :Vhh + lx + mxx aequ. 0.
11 Leibniz writes d, x:y.
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have presented it to show how the above-mentioned rules can be used even in a
more difficult computation. Now it remains to show their use in cases easier to
grasp.

Let two points C and E [Fig. 3] be given and a line SS in the same plane. It is

required to find a point F on SS such that when E and C are connected with F

E

the sum of the rectangle ofGF and a given line h and the rectangle of FE and a
given line t are as small as possible. 12 In other words, if SS is a line separating
two media, and h represents the density of the medium on the side of C (say
water), r that of the medium on the side of E (say air), then we ask for the point
F such that the path from C to E via F is the shortest possible. Let us assume
that all such possible sums of rectangles, or all possible paths, are represented
by the ordinates KV of curve VV perpendicular to the line GK [Fig. 2], We shall

call these ordinates w. Then it is required to find their minimum NM

.

Since C
and E [Fig. 3] are given, their perpendiculars to SS are also given, namely CP
(which we call c) and EQ (which we call e); moreover PQ (which we call p) is

given. We denote QF = GN (or AX) by x, CF by/, and EF by g. Then FP =

V ~ x>f = Vcc + pp - 2px + xx or = VI for short; g = Vee + xx or = Vm
for short. Hence

w = hVl + rVm.

The differential equation (since dw = 0 in the case of a minimum) is, according
to our calculus,

0 = + h dl: 2Vl + r dm : 2Vm.

But dl = —2(p — x) dx, dm = 2x dx; hence

h(p - x): f = rx: g.

When we now apply this to dioptrics, and take / and g, that is, CF and EF,
equal to each other (since the refraction at the point F is the same no matter
how long the line CF may be), then h(p - x) = rx or h : r = x : (p - x), or
h:r = QF:FP; hence the sines of the angles of incidence and of refraction,

12 For this problem, due to Fermat
(
Oeuvres

,
II (1844), 457), see note 13.
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FP and QF, are in inverse ratio to r and h, the densities of the media in which

the incidence and the refraction take place. However, this density is not to be

understood with respect to us, but to the resistance which the light rays meet.

Thus we have a demonstration of the computation exhibited elsewhere in these

Acta [1682], where we presented a general foundation of optics, catoptrics, and
dioptrics. 13 Other very learned men have sought in many devious ways what
someone versed in this calculus can accomplish in these lines as by magic.

This I shall explain by still another example. Let 13 [Fig. 4] be a curve of such

a nature that, if we draw from one of its points, such as 3, six lines 34, 35, 36,

3

37, 38, 39 to six fixed points 4, 5, 6, 7, 8, 9 on the axis, then their sum is equal to

a given line. Let T14526789 be the axis, 12 the abscissa, 23 the ordinate, and
21 21 21

let the tangent 3T be required. Then I claim that T2 is to 23 as —; + — +
34 35 36

23 23 23 24 25 26 27 28 29 m+
37

+
38

+
39

t0 ~34~35 +
T6

+
37

+
38

+
T9'

The Same rule WlU

hold if we increase the number of terms, taking not six but ten or more fixed

points. If we wanted to solve this problem by the existing tangent methods,

removing irrationals, then it would be a most tedious and sometimes insuperable

task; in this case we would have to set up the condition that the rectangular

planes and solids which can be constructed by means of all possible combina-
tions of two or three of these lines are equal to a given quantity. 14 In all these

cases and even in more complicated ones our methods are of astonishing and
unequaled facility.

And this is only the beginning of much more sublime Geometry, pertaining to

even the most difficult and most beautiful problems of applied mathematics,
which without our differential calculus or something similar no one could attack

with any such ease. We shall add as appendix the solution of the problem which
De Beaune proposed to Descartes and which he tried to solve in Vol. 3 of the

Letters, but without success. 15 It is required to find a curve WW such that, its

13 In this paper, “Unicum opticae, catoptrieae et dioptricae principium,” Acta Eruditorum
1 (1683), 186—190, dealing with the laws of refraction and reflection, Leibniz makes known'
for the first time in print that he has his own mqthodus de maximis et minimis.

14 If the coordinates of point i are a„ i = 4, 5, ...

,

and those of point 3 are x, y, then this

result can immediately be obtained by differentiating 2i V (x — a,)2 + y
2

. Leibniz writes
— 24, — 25 because his segments are all positive.

16 This is an inverse-tangent problem; Leibniz quotes Les lettres de Rene Descartes (3 vols.;
Paris, ed. C. de Clerselier, 1657—1667). The problem is part of a long series of investigations
that begins with the invention of logarithms by Napier by comparing an arithmetic and a
geometric series and leads up to the full recognition of the inverse relation of the two func-
tions y = log x and x = e» by Euler. Florimond De Beaune (1601-1652), a jurist at Blois,
had written to Descartes about some curves; Descartes’s answer of 1639 exists (Descartes,

(footnote continued)
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tangent WG being drawn to the axis, XC is always equal to a given constant

line a. Then XW or w is to XC or a as dw is to dx. If dx (which can be chosen

arbitrarily) is taken constant, hence always equal to, say, b, that is, x or AX

increases uniformly, then w =
^
dw. Those ordinates w are therefore propor-

tional to their dw, their increments or differences, and this means that if the x

form an arithmetic progression, then the w form a geometric progression. In

other words, if the w are numbers, the x will be logarithms, so that the curve

WW is logarithmic.

Leibniz (like Newton) was never very consistent in his explanation of differentials. For
instance, in his reply to his critic, the Dutch physician Bernard Nieuwentijt (1654-1718),

who rebuked him for rejecting infinitely small quantities as if they were nothing at all

(Cantor, Geschichte, III, 244-247), he answered that it was correct to consider quantities of

which the difference is incomparably small to be equal; a line is not lengthened by adding a

point. It was only a question of words, he added, whether one rejected such an equality:

“Responsio ad nunnullos difficultates a Dn. Bernardo Niewentiit . . . motas,” Acta
Eruditorum 7 (1695), 310-316; Mathematische Schriften, Abth. 2, Band I, 320-328. And
later he pointed out: “There are different degrees of infinity or of infinitely small, just as

the globe of the Earth is estimated as a point in proportion to the distance of the fixed stars,

and a play ball is still a point as compared to the radius of the terrestrial sphere, so that the

distance of the fixed stars is an infinitely infinite or infinite of the infinite with respect to

the diameter of the ball” (“Memoire de Mr G. G. Leibniz touchant son sentiment sur le

calcul dififerentiel,” Memoires pour Vhistoire des sciences et des beaux arts = Journal de

Trevoux (Nov.-Dec. 1701), 270-272; also Leibniz, Mathematische Schriften, Abth. 2, Band
I, 350. No wonder that in his reply to Nieuwentijt he referred to the indirect method of

Archimedes as the final test of the truth. See also C. B. Boyer, The history of the calculus

(Dover, New York, 1949), 213-222.

Oeuvres, II, 510-519); it was printed in the above-mentioned seventeenth-century edition of
Descartes’s letter and was studied by Leibniz. One of the curves was defined by a geometric
description equivalent to the equation dy/dx = (x — y)jb. By means of the substitution
x' — b — x + y, y' = y this equation is transformed into dy'/dx' = —y'/b, the differential
equation of what we now call the logarithmic curve. Descartes comes to the equivalent of
this result; without mentioning logarithms he derives an inequality that can be written in
our notation

1
- +

1

n + 1

1 . to 1

7 > log — >m — 1 n n+l
1

n + 2

1
• • H

TO

(n < TO — 1; TO, n positive integers); see C. J. Scriba, “Zur Losung des 2. Debeauneschen
Problems durch Descartes,” Archive for History of Exact Sciences 1 (1961), 406-419. Des-
cartes, like Napier, lets the logarithms grow when the argument decreases, while Briggs,
who introduces 10 as base, lets argument and function grow at the same time. The next
important steps, known to Leibniz, were Gregoire De Saint Vincent’s determination of the
area enclosed by a hyperbola, two ordinates, and an asymptote (1647), which Alfons Anton
De Sarasa (1649) interpreted with the aid of logarithms, and Nikolaus Mercator’s series (1667)

A2 q3 ^4
for this area of the hyperbola: o — — 4 — + •••

2 3 4
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2 LEIBNIZ. THE FIRST PUBLICATION OF HIS INTEGRAL CALCULUS

Two years after Leibniz had published his first account of the differential calculus, he pub-

lished a paper on the inverse tangent problem in which the symbol
j
appears. This was done

in a rather casual way, since the paper was a review of a book by the Scottish pupil of

Newton, John Craig. Leibniz used the occasion to illustrate two fundamental points at the

same time: (a) the power of the integration symbol in combination with that of differentia-

tion (if p dy = x dx, then (' p dy = j
x dx, and conversely, which is the expression of the

inverse character of the differential and the integral calculus), and (b) the power ofthe method
to represent that still poorly explored type of relation, the “ transcendental” quantities.

Leibniz’s paper “De geometria recondita et analysi indivisibilium atque infinitorum”

(On a deeply hidden geometry and the analysis of indivisibles and infinities) appeared in the

Acta Eruditorum 5 (1686) and was reprinted in Leibniz, Mathematische Schriften, Abth. 2,

Band III, 226-235. A German translation by G. Kowalewski can be found in Ostwald’s

Klassiker, No. 162 (Engelmann, Leipzig, 1908). Here follows a translation of that part of the

paper dealing with the introduction of the integral calculus.

For transcendental problems, 1 wherever dimensions and tangents occur that

have to be found by computation, there can hardly be found a calculus more
useful, shorter, and more universal than my differential calculus, or analysis of

indivisibles and infinites, of which only a small sample or corollary is contained

in my Method of Tangents published in the Acta of October 1684. 2 It has been

much praised by Dr. Craig, who has also suspected that there is more to it, and
on p. 29 of his little book 3 has made an attempt to prove Barrow’s theorem (that

the sum of the intervals between the ordinates and perpendiculars to a curve

taken on the axis and measured in it is equal to half of the square of the final

ordinate).

4

In trying this he deviates a bit from his goal, which does not surprise

me in the new method: so that I believe that I may oblige him and others by
publishing here an addition to a subject that seems to have so wide a use. From
it flow all the admirable theorems and problems of this kind with such ease that

there is no more need to teach and retain them than for him who knows our

present algebra 6 to memorize many theorems of ordinary geometry.

1 Leibniz repeatedly stressed (even in the title of his paper of 1684) that his method was
also valid for nonalgebraic quantities. In those days, with an undeveloped function concept,
there were algebraic expressions and curves, “mechanical” curves such as the cycloid,

arbitrary curves, and tabulated rows of numbers such as sines and logarithms. Leibniz’s
point is that his calculus can deal in a unified way not only with algebraic expressions but
also with others.

2 This is the preceding Selection V. 1

.

3 J . Craig, Methodus figurarum lineis rectis et curvis comprehensarum quadraturas deter -

minandi (London, 1685). This book contained a reference to Leibniz’s calculus. The Leibniz
form of the calculus was therefore announced in an English book before Newton published
his theory. The Scottish theologian John Craig (1660 5-1731) was at Cambridge around 1680;
he loved to apply mathematics to matters divine.

4
I. Barrow, Lectiones geometricae (Cambridge, 1670), Lecture XI, no. 1; see Selection

IV. 14. When p is the subnormal of the curve y = f(x), then p dx = dy = \y
2

.

5 Latin “illi qui Speciosam tenet,” which we think may mean: “to him who knows his

speciosa.” The “logistica speciosa” of Framjois Viete (1591; see our Selection II. 5) was the
art of writing equations with letters as coefficients instead of numbers.
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I proceed to this subject in the following way. Let the ordinate be x, the

abscissa y, and the interval between perpendicular and ordinate, described

before, p. Then according to my method it follows immediately that p dy = x dx,

as Dr. Craig has also found. When we now subject this differential equation to

summation we obtain
j p dy = J

x dx (like powers and roots in ordinary cal-

culations, so here sum and difference, or
J
and d, are each other’s converse).

Hence we have
j
p dy = \xx, which was to be demonstrated. Now I prefer to

use dx and similar symbols rather than special letters, since this dx is a certain

modification of the x and by virtue of this it happens that—when necessary

—

only the letter x with its powers and differentials enters into the calculus, and
transcendental relations are expressed between x and some other quantity. 6

Transcendental curves can therefore also be expressed by an equation, for

example, if a is an arc, and the versed sine x, then a = j
dx: V2x — x2 and if

the ordinate of a cycloid is y, then y = V'2x - xx + j
dx: V k2x - xx, which

equation perfectly expresses the relation between the ordinate y and the abscissa

x. From it all properties of the cycloid can be demonstrated. The analytic

calculus is thus extended to those curves that hitherto have been excluded for

no better reason than that they were thought to be unsuited to it. Wallis’s

interpolations and innumerable other questions can be derived from this.

3 LEIBNIZ. THE FUNDAMENTAL THEOREM OF THE CALCULUS

From the many papers that Leibniz wrote on the calculus we reproduce a part of the
“ Supplementum geometriae dimensoriae 1

. . . similiterque multiplex constructio lineae ex
data tangentium conditione,” Acta Eruditorum (1693), 385-392, translated from Leibniz,

Mathematische Schriften, Abth. 2, Band I, 294-301. Here he expresses by means of a figure

the inverse relation of integration and differentiation. There exists a German translation in

Ostwald’s Klassiker, No. 162 (Engelmann, Leipzig, 1908), 24-34.

I shall now show that the general problem of quadratures can be reduced to the

finding of a line that has a given law of tangency (declivitas)

,

that is, for which the
sides of the characteristic triangle have a given mutual relation. Then I shall

show how this line can be described by a motion that I have invented. For this

6 The meaning of this obscure Latin sentence seems to be (a) that the introduction of the
dx under the integral sign makes it easier to see (what we would call) the functional character
of the expression, as is clear when we pass from one variable to another and (b) that there-
fore we have a way of writing operating symbols expressing transcendental quantities such

as J dx :x, J dx : Vl — x2
, symbols that express the nature of the quantity (contrary to such

expressions as log x or sin x, which in themselves do not express a property). Leibniz is

often quite obscure when he wants to tell us about a really exciting discovery he has made.
1 Leibniz distinguishes here between geometria dimensoria, which deals with quadratures,

and geometria determinatrix, which can be reduced to algebraic equations.
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purpose [Fig. 1] I assume for every curve C(C') a double characteristic triangle, 2

one, TBC, that is assignable, and one, OLC
,
that is inassignable, 3 and these two

are similar. The inassignable triangle consists of the parts GL, LC, with the

elements of the coordinates OF, CB as sides, and GO, the element of arc, as

the base or hypotenuse. But the assignable triangle TBC consists of the axis, the
ordinate, and the tangent, and therefore contains the angle between the direc-

tion of the curve (or its tangent) and the axis or base, that is, the inclination of

the curve at the given point C. Now let F(H), the region of which the area has
to be squared, 4 be enclosed between the curve H(H), the parallel lines FH and
(F)(H), and the axis F(F); on that axis let A be a fixed point, and let a line AB,
the conjugate axis, be drawn through A perpendicular to A F. We assume that
point C lies on IIF (continued if necessary); this gives a new curve C(C') with
the property that, if from point C to the conjugate axis AB (continued if neces-

sary) both its ordinate CB (equal to A F) and tangent CT are drawn, the part
T

B

of the axis between them is to BC as II I' to a constant [segment] a, or a times
BT is equal to the rectangle AFH (circumscribed about the trilinear figure

2 In Fig. 1 Leibniz assigns the symbol (C) to two points which we denote by (C) and (O').
If, with Leibniz, we write CF = x, BC = y, HF = z, then E(C) = dx, GE = F{F) = dy,
and H(H)(F)F = z dy. First Leibniz introduces curve C(C') with its characteristic triangle,
and then later reintroduces it as the squareing curve [curva quadratrix] of curve A FI(TF)

.

3 For want of anything better we use Leibniz’s terms assignabilis and inassignabilis .

G. Kowalewski, Leibniz iiber die Analysis des Unendlichen, Ostwald’s Klassiker, No. 162
(Engelmann, Leipzig, 1908), 30, uses the German angebbar and unangebbar, “indicable” and
“unindieable.” For “differential” Leibniz in our text uses the term “element.” Observe
also the use of the term “coordinates” (Latin coordinatae).

4 The Latin is here a little more expressive than the English. From the Latin quadrare we
can derive quadrans, quadrandus, quadratrix, quadratura, which can be translated by “to
square,” “squaring,” “to be squared,” “squaring curve” or “quadratrix,” and “quadra-
ture.”
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AFHA). 5 This being established, I claim that the rectangle on a and E(C) (we

must discriminate between the ordinates FC and (F)(C) of the curve) is equal

to the region F(H). When therefore I continue line 11(11) to A, the trilinear

figure AFHA of the figure to be squared is equal to the rectangle with the con-

stant a and the ordinate FC of the squaring curve as sides. This follows imme-
diately from our calculus. Let AF = y, FH = 2

,
BT = t, and FC = x; then

t = zy: a, according to our assumption; on the other hand, t = y dx:dy because

of the property of the tangents expressed in our calculus. Hence a dx = zdy
and therefore ax = J

2 dy = AFHA. Hence the curve C(C) is the quadratrix

with respect to the curve H(H), while the ordinate FC of C(C'), multiplied by the

constant a

,

makes the rectangle equal to the area, or the sum of the ordinates

H(H) corresponding to the corresponding abscissas AF. Therefore, since

BT : A F = FH :a (by assumption), and the relation of this FH to AF (which

expresses the nature of the figure to be squared) is given, the relation of BT to

FH or to BC, as well as that of BT to TC, will be given, that is, the relation

between the sides of triangle TBC. 6 Hence, all that is needed to be able to per-

form the quadratures and measurements is to be able to describe the curve

C(C') (which, as we have shown, is the quadratrix), when the relation between
the sides of the assignable characteristic triangle TBC (that is, the law of in-

clination of the curve) is given.

Leibniz continues by describing an instrument that can perform this construction.

4 NEWTON AND GREGORY. BINOMIAL SERIES

Isaac Newton started to work on what is now called the calculus in 1664 under Barrow at

Cambridge (Selection IV. 14). One of his early sources was the Latin edition by F. van
Schooten of the Geometrie of Descartes, which also had contributions to the infinitesimal

calculus. Newton’s first manuscript notes date from 1665. Here we see emerge his “pricked”
letters, such as x for our dxjdt. Studying Wallis’s Arithmetica infinitorum he also discovered

the binomial series. Then, in 1669, having studied Nicolas Mercator’s Logarithmotechnia

(London, 1668) and James Gregory’s De vera circuli et hyperbolae quadratura (Padua, 1667),

he composed the manuscript later published as De analysi per aequationes numero ter-

minorum infinitas (ed. W. Jones, London, 1711). Expanding on his fluxional methods, he
wrote another text in 1671, entitled Methodus fluxionum et serierum infinitorum, first pub-
lished, in English translation, as The method offluxions and infinite series, ed. John Colson
(London, 1736); the original was first published by Samuel Horsley in the Opera omnia
(London, 1779-1785), under the title Geometria analytica.

Then, in 1676, in two letters to Henry Oldenburg, the secretary of the Royal Society and,
like Mersenne at an earlier date, a man whose scientific contacts connected him with prac-

5 This is Pascal’s expression; see Selections IV.ll, 12.
6 This reasoning is still very much like that of Barrow, Gregory, and Torricelli, but

because Leibniz possesses the converse relation a dx = x dy <-> J a dx =
J x dy he needs only

one demonstration, where Barrow needed two (Lecture X, 11; XI, 19; Selection IY.14).
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tically all who worked in the exact sciences, Newton presented some of his results, especially

on the binomial series and on fluxions. The letters were destined for Leibniz, then in his

early struggles for the discovery of his own calculus (see Selection V.l). After some time,

Newton’s attention was directed toward mechanics and astronomy; the result was the

immortal Philosophiae naturalis principia mathematica (London, 1687; Principia for short),

with its exposition of the planetary theory on the basis of the law of universal gravity.

Newton did not explain his theory of fluxions in this book, preferring to give his proofs in

classical geometric form as Huygens had done. However, some of his lemmas and proposi-

tions present, in carefully chosen language, a few products of his meditations on the

calculus, and we reprint them here as Selections V.5, 6. Then, finally, in an attempt to

collect his thoughts on fluxions, Newton produced in 1693 a manuscript that was eventually

published as Tractatus de quadratura curvarum (London, 1704), which we have chosen for

Selection V.7, being, as it seems, part of the last formulation that Newton gave to his theory

of fluxions.

The Analysis per aequationes, the Quadratura curvarum, and the Methodus fluxionum have

been republished, in their eighteenth-century English translations, by D. T. Whiteside,

The mathematical works of Isaac Newton (Johnson Reprint Co., New York, London, 1964).

Our first selection of Newton’s work gives essential parts of his two letters of 1676 to

Oldenburg, dealing in the main with the binomial series. By applying Wallis’s methods of

interpolation and extrapolation to new problems, Newton had taken the concept of negative

and fractional exponents from Wallis, and so had been able to generalize the binomial

theorem, already known for a long time for positive integral exponents (see Selection 1.5

on the Pascal triangle), to these more generalized exponents, by which a polynomial expres-

sion was changed into an infinite series. He then was able to show how a great many series

that already existed in the literature could be regarded as special cases, either directly or

by differentiation or integration.

Here follow the two letters from Newton to Oldenburg; they are taken from The corre-

spondence of Isaac Newton, ed. H. W. Turnbull (Cambridge University Press, New York,

1959), vol. 1.

LETTER OF JUNE 13, 1676

Most worthy Sir,

Though the modesty of Mr. Leibniz, in the extracts from his letter which you
have lately sent me, pays great tribute to our countrymen for a certain theory of

infinite series, about which there now begins to be some talk, yet I have no
doubt that he has discovered not only a method for reducing any quantities

whatever to such series, as he asserts, but also various shortened forms, perhaps

like our own, if not even better. Since, however, he very much wants to know
what has been discovered in this subject by the English, and since I myself fell

upon this theory some years ago, I have sent you some of those things which
occurred to me in order to satisfy his wishes, at any rate in part.

Fractions are reduced to infinite series by division; and radical quantities by
extraction of the roots, by carrying out those operations in the symbols just as
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they are commonly carried out in decimal numbers. These are the foundations
of these reductions : but extractions of roots are much shortened by this theorem,

(p + PQ)mln = pram
+ ^ AQ + BQ + CQ

,

m — 3n _
+ 4n

DQ + etc ->

where P + PQ signifies the quantity whose root or even any power, or the root

of a power, is to be found; P signifies the first term of that quantity, Q the
remaining terms divided by the first, and mjn the numerical index of the power
of P + PQ, whether that power is integral or (so to speak) fractional, whether
positive or negative. For as analysts, instead of cm, aaa, etc., are accustomed to

write a2
,
a3

,
etc., so instead of Va, Va3

, Vc:a5
,
etc. I write a-, ai

, a>, and
instead of 1/a, 1/aa, 1/a3 , 1 write a" 1

,
a“ 2

, a" 3
.

1 And so for

aa

Vc

:

(a3 + bbx)

I write aa(a3 + bbx)~’, and for

(mb

Vc\{{a3 + bbx)(a3 + bbx)}

I write aab(a3 + bbx) 1
: in which last case, if (a3 + bbx)

~
' is supposed to be

(P + PQ)mln in the Rule, then P will be equal to a3
, Q to bbx/a3

,
m to -2, and

n to 3. Finally, for the terms found in the quotient in the course of the working
I employ A, B, C, D, etc., namely, A for the first term, Pmln

;
B for the second

term,
(mln)AQ‘, and so on. For the rest, the use of the rule will appear from the

examples.

Example 1.

V (c
2 + x2

)
or (c

2 + x2
)1 = c +

2c

x4 x6

8

c

3 + 16c3

5xB

128?
7a;

10

+
256

c

3 + etC ’

For in this case, P = c2
, Q = x2

/c
2

,
m = 1, n = 2, A (= Pm 'n = (cc)i) = c,

B ( = (mln)AQ )
= x2

/2c, C
|

= ——— BQ
j

^ ; and so on.

1 Newton had learned this method of broken and negative exponents from Wallis, but the
idea goes back as far as Oresme and Chuquet; see Selection II.2. Through the influence of
Wallis and Newton the method was gradually adopted by other mathematicians. The
notation Vc:(

)
indicates the cube root.
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Other examples give the solution of the equations y
3 — 2y — 5 = 0 and y

3 + axy + a2
y —

x3 — 2

a

3 = 0, series for sin x and for sin2 x, the solution of Kepler’s problem (to divide

a semicircle by a line through a given point on the diameter into two sections of which the

areas are in given proportion2
)
for an ellipse, the rectification of the arc of an ellipse and a

hyperbola, the area of a hyperbola with the aid of the series for the logarithm, the quadra-

ture of the quadratrix x = y tan xja, and the volume of a segment of an ellipsoid of rotation.

Newton, careful not to give too much away, selected these examples from results that were

already known.

Leibniz answered in his letter of August 17 with an account of several of his own results

in finding quadratures, hinting at his possession of a general method. He also offered several

series, among them 1 — J + g— 7 + •

,
as the ratio of the area of a circle to the cir-

cumscribed square—a series which Leibniz had already mentioned to friends in 1673, but

which James Gregory had found before .

3

Newton was interested, and answered as follows:

LETTER OF OCTOBER 24, 1676

Cambridge October 24 1676

Most worthy Sir,

1 can hardly tell with what pleasure I have read the letters of those very dis-

tinguished men Leibniz and Tsehirnhaus. 4 Leibniz’s method for obtaining con-

vergent series is certainly very elegant, and it would have sufficiently revealed

the genius of its author, even if he had written nothing else. But what he has

scattered elsewhere throughout his letter is most worthy of his reputation—it

leads us also to hope for very great things from him. The variety of ways by
which the same goal is approached has given me the greater pleasure, because

three methods of arriving at series of that kind had already become known to

me, so that I coidd scarcely expect a new one to be communicated to us. One of

mine I have described before
;
I now add another, namely, that by which I first

chanced on these series—for I chanced on them before I knew the divisions and
extractions of roots which I now use. And an explanation of this will serve to

2 Kepler, in his Astronomia nova stellae Martis (Heidelberg, 1609), showed that the prob-
lem of finding the position of a planet in its elliptical orbit leads to this other problem.

3 Newton’s letters were first published in J. Wallis, Opera mathematica. III (Oxford, 1699),

622-629; the letter of Gregory was first published in Correspondence of scientific men of the

XVIIth century, ed. S. J. Rigaud (2 vols.; Oxford University Press, Oxford, 1841), II, 209.

Gregory, like Newton, used his result to expand many functions into infinite series. He also

discovered Taylor’s theorem; see Selection V.ll. In a letter to Collins of February 15, 1671,

we find as one of his results the series for tan
“ 1 x, or, more precisely (since the tangent for

Gregory is a line), the expansion

_ t
3

«
5 C t

9

if r tan ajr = t, a = arc, r = radius (Gregory Memorial Volume, p. 170), first published in

Commercium epistolicum J . Collins et aliorum de analysi promota (London, 1712), 25-26. For
a = itj

4
,
r — 1, t — 1, we obtain the series of Leibniz. On Collins see p. 290.

4 Tsehirnhaus (see Selection II. 11) wrote a letter to Oldenburg, dated September 1, 1676,

of which Oldenburg informed Newton.
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lay bare, what Leibniz desires from me, the basis of the theorem set forth near
the beginning of the former letter.

At the beginning ofmy mathematical studies, when I had met with the works
of our celebrated Wallis, on considering the series by the intercalation of which
he himself exhibits the area of the circle and the hyperbola, the fact that, in the
series of curves whose common base or axis is x and the ordinates

if the areas of every other of them, namely

could be interpolated, we should have the areas of the intermediate ones, of

which the first (1 — x2
)
1 is the circle: in order to interpolate these series I noted

that in all of them the first term was x and that the second terms fa;
3

, fa:
3

, fa:
3

,

fa;
3

,
etc., were in arithmetical progression, and hence that the first two terms of

the series to be intercalated ought to be x - f(fx
3

), x - f(fa;
3
), x - i(fa;3 ), etc.

To intercalate the rest I began to reflect that the denominators 1, 3, 5, 7, etc.

were in arithmetical progression, so that the numerical coefficients of the
numerators only were still in need of investigation. But in the alternately given
areas these were the figures of powers of the number 11, namely of these, 11°,

11\ ll 2
,
ll 3

,
ll 4

,
that is, first 1; then 1, 1; thirdly, 1, 2, 1; fourthly 1, 3, 3, 1;

fifthly 1, 4, 6, 4, 1, etc. And so I began .to inquire how the remaining figures in

these series could be derived from the first two given figures, and I found that

on putting m for the second figure, the rest would be produced by continual
multiplication of the terms of this series,

to — 0 m — 1
; X — to — 2 to — 3 to — 4

n X X

For example, let m = 4, and 4 x \(m - 1), that is 6 will be the third term, and
6 x - 2), that is 4 the fourth, and 4 x \(m -

3), that is 1 the fifth, and
1 x i(m - 4), that is 0 the sixth, at which term in this case the series stops.

Accordingly, I applied this rule for interposing series among series, and since,

for the circle, the second term was f(fa;
3
), I put m = \, and the terms arising

were

and so to infinity. Whence I came to understand that the area of the circular

segment which I wanted was

_ iff _ A-*
7

__ tIs*
1

3 5 7

.9

X
9

etc.
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And by the same reasoning the areas of the remaining curves, which were to be

inserted, were likewise obtained: as also the area of the hyperbola and of the

other alternate curves in this series (1 + a;
2
)-, (1 + a;

2
)*, (1 + a;

2
)-, (1 + a:

2
)",

etc. And the same theory serves to intercalate other series, and that through

intervals of two or more terms when they are absent at the same time. This was
my first entry upon these studies, and it had certainly escaped my memory, had
I not a few weeks ago cast my eye back on some notes.

But when I had learnt this, I immediately began to consider that the terms

(1 - x2)\ (1 - a;
2
)*, (1 - x2

)*, (1 - a;
2
)*, etc.,

that is to say,

1, 1 — x2
, 1 — 2a;

2 + xi
, 1 — 3a;

2 + 3a;
4 — xe

, etc.

could be interpolated in the same way as the areas generated by them : and that

nothing else was required for this purpose but to omit the denominators 1,3,5, 7,

etc., which are in the terms expressing the areas; this means that the coefficients

of the terms of the quantity to be intercalated (1 — a;
2
)*, or (1 — a;

2
)-, or in

general (1 — x2
)

m
,
arise by the continued multiplication of the terms of this

series

m x etc.,

so that (for example)

(1 — x2 )' was the value of 1 — \x2 — fa;
4 — y-gx6

,
etc.,

(1 — a;
2

)
5 of 1 - fa;

2 + fa;
4 + /sx6

, etc.,

and

(1 — a;
2
)* of 1 — fa;

2 — fa;
4 —

-/fa;
6

,
etc.

So then the general reduction of radicals into infinite series by that rule, which
I laid down at the beginning of my earlier letter, became known to me, and that

before I was acquainted with the extraction of roots. But once this was known,
that other could not long remain hidden from me. For in order to test these

processes, I multiplied

1 — fa;
2 — fa;

4 — -/-a;
6

,
etc.

into itself; and it became 1 — x2
,
the remaining terms vanishing by the con-

tinuation of the series to infinity. And even so 1 — \x2 — fa;
4 — -/-a;

6
,

etc.

multiplied twice into itself also produced 1 — a;
2

. And as this was not only sure

proof of these conclusions so too it guided me to try whether, conversely, these

series, which it thus affirmed to be roots of the quantity 1 — x2
,
might not be
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extracted out of it in an arithmetical manner. And the matter turned out well.

This was the form of the working in square roots.

1 - x2
{\ - \x2 - £x* - -ig-a:6

, etc.

1

0 - x2

— X2 + \x4

— jad

- \X4 + §Z6 + -^jXS

0 - l

Hx
6 - eVr

8

Newton continues by mentioning in a guarded way, by means of an anagram, that he has
a general method for finding tangents and quadratures, which is not limited by irra-

tionalities. He gives a series representation of the binomial integral

J0 = j
ze(e + fzr dz,

but without explanation (which Leibniz had no trouble in finding, as a marginal note to the
letter shows). Among examples Newton gives the rectification of the cissoid xy2 = (a - x3 ),

a formula in series which we can write

^
— tan 1

^ T ^ tan 1

^ ^ tan -1
g,

and the solution of x from

in the form

x2 x3 ad
!'-* + T+ 3 + 4

+

y
2

y
3 «4

X = y ~2 + J-k +

A few years after Newton’s discovery of the binomial series James Gregory (1638-1675),
the Scottish mathematician, rediscovered it independently. We know it from letters of
Gregory to the London mathematician John Collins (1625-1683), a correspondent of
Newton’s and of many other mathematicians. We give here a translation from Gregory’s
letter of November 20, 1670, taken from James Gregory tercentenary memorial volume, ed.
H. W. Turnbull (Bell, London, 1939), 131-133.

TO FIND THE NUMBER OF A LOGARITHM

Given b, log b = e,b + d, log (b + d) = e + c, it is required to find the number
whose logarithm is e + a.
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Take a series of continual proportions b, d, d 2
/b, d 3

/b
2

, etc., and another series

a/c, (a — c)/2c, (a — 2c)/3c, (a — 3c)/4c, etc., and let //c be the product of the

first two terms of the second series, g/c that of the first three, hjc that of the

first four, i/c that of the first five, etc. The number whose logarithm is e + a

will be

e + a
, ad fd

2 gd 3 hd4 id5

+
c
+

cb
+

cb2
+

cb3
+

cb4

kd 6

-f- —== -f- etc.

Hence with a little work but without difficulty any pure equation whatever may
be solved.

This statement gives for x = e + a

, a a(a — c) d 2 a(a — c)(a — 2c) d 3

X
c c.2c b c.2c.3c b2

’

which we recognize as the binomial expansion of 6(1 + d/6) a/c
,
whose logarithm is

log b + - [log (b + d) — log b] = e + a.

By pure equation Gregory means an equation of the form axn = b, n rational. He adds

an example which gives the daily rate percent at compound interest equivalent to 6 percent

per annum; he takes

Then

b = 100, d = 6, o = l, c = 365.

1 +
g \ 1/365

Too/
100.0160101;

the correct value is 100.0159919.

On the atmosphere of intellectual tension typical of the period, see for example the

accounts in J. E. Hofmann, Die Entwicklungsgeschichte der Leibnizschen Mathematik

(Leibnizens Verlag, Munich, 1949), 60-87, 194-205, or J. F. Scott, The mathematical work

ofJohn Wallis (Taylor and Francis, London, 1938), chaps. 9, 10. See further H. W. Turnbull,

The mathematical discoveries of Newton (Blackie and Son, Glasgow, 1945).

5 NEWTON. PRIME AND ULTIMATE RATIOS

In some sections of the Principia, Newton gave some information on his discoveries in the

field that Leibniz, in 1684, had called the differential calculus. After opening his work with

his three Axioms, or Laws of Motion, he presented in Book I his dynamics of bodies moving

under central forces, ending with his theories of the moon and of the attraction of a sphere.
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The demonstrations are all geometric in the ancient Greek way, but instead of the indirect

proof Newton uses his theory of prime and ultimate ratios, in which we now recognize the
theory of limits, although he explained it in a manner difficult to understand, especially by
his contemporaries. Then, in Book II, which contains applications to bodies moving in a
resisting medium, Newton uses certain principles of his theory of fluxions, but without
introducing its notation, nor even the term fluxion (see Selection V.6).

Book III, the last one of the Principia, describes the system of the world.

Here we present the lemmas dealing with Newton’s theory of prime and ultimate (or first

and last) ratios. They can be found in Book I, Section I. We take them from the translation

of the second edition of the Principia (1713) by Andrew Motte (London, 1729), as revised
by F . Cajori in Sir Isaac Newton’s Mathematical principles of natural philosophy (University

of California Press, Berkeley, 1945). The sections marked by * are absent or different in the
first edition.

Section I is called, The method of prime and ultimate ratios of quantities, by the help of
which we demonstrate the propositions that follow. Then follows:

LEMMA I

Quantities, and the ratios of quantities, which in any finite time converge continually

to equality, and before the end of that time approach nearer to each other than bt any
given difference, become ultimately equal.

If you deny it, suppose them to be ultimately unequal, and let D be their

ultimate difference. Therefore they cannot approach nearer to equality than by
that given difference D; which is contrary to the supposition.

LEMMA II

If in any figure AacE [Fig. 1], terminated by the right lines Aa, AE, and the curve

acE, there be inscribed any number of parallelograms Ab, Be, Cd, Ac., compre-

hended under equal bases AB, BC, CD, Ac., and the sides, Bb, Cc, Dd, Ac.,

parallel to one side Aa of the figure; and the parallelograms aKbl, bLcm, cMdn,
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cfcc., are completed: then if the breadth of those parallelograms be supposed to be

diminished
,
and their number to be augmented in infinitum, I say, that the ultimate

ratios which the inscribed figure AKbLcMdD, the circumscribedfigure AalbmcndoE

,

and curvilinear figure AabcdE, will have to one another, are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum of the

parallelograms Kl, Lm, Mn, Do, that is (from the equality of all their bases),

the rectangle under one of their bases Kb and the sum of their altitudes Aa, that

is, the rectangle ABla. But this rectangle, because its breadth AB is supposed

diminished in infinitum, becomes less than any given space. And therefore (by

Lem. 1) the figures inscribed and circumscribed become ultimately equal one

to the other; and much more will the intermediate curvilinear figure be ulti-

mately equal to either. Q.E.D.

LEMMA III

The same ultimate ratios are also ratios of equality, when the breadths AB, BC,
DC, &c., of the parallelograms are unequal, and are all diminished in infinitum.

For suppose AF equal to the greatest breadth, and complete the parallelo-

gram FAaf. This parallelogram will be greater than the difference ofthe inscribed

and circumscribed figures; but, because its breadth AFis diminished in infinitum

it will become less than any given rectangle. Q.E.D.

Corollary I. Hence the ultimate sum of those evanescent parallelograms will

in all parts coincide with the curvilinear figure.

Corollary II. Much more will the rectilinear figure comprehended under the

chords of the evanescent arcs ab, be, cd, &c., ultimately coincide with the

curvilinear figure.

Corollary III. And also the circumscribed rectilinear figure comprehended
under the tangents of the same arcs.

Corollary IV. And therefore these ultimate figures (as to their perimeters acE
)

are not rectilinear, but curvilinear limits of rectilinear figures.

LEMMA IV

If in two figures AacE, PprT [Fig. 2], there are inscribed (as before) two series of

parallelograms, an equal number in each series, and, their breadths being diminished

in infinitum, if the ultimate ratios of the parallelograms in one figure to those in the

other, each to each respectively, are the same: I say, that those two figures, AacE,
PprT, are to each other in that same ratio.

a
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For as the parallelograms in the one are severally to the parallelograms in the

other, so (by composition) is the sum of all in the one to the sum of all in the

other; and so is the one figure to the other; because (by Lem. Ill) the former

figure to the former sum, and the latter figure to the latter sum, are both in the

ratio of equality. Q.E.D.

Corollary. Hence if two quantities of any kind are divided in any manner into

an equal number of parts, and those parts, when their number is augmented,
and their magnitude diminished in infinitum, have a given ratio to each other,

the first to the first, the second to the second, and so on in order, all of them
taken together will be to each other in that same given ratio. For if, in the figures

of this Lemma, the parallelograms are taken to each other in the ratio of the

parts, the sum of the parts will always be as the sum of the parallelograms; and
therefore supposing the number of the parallelograms and parts to be augmented,
and their magnitudes diminished in infinitum, those sums will be in the ultimate

ratio of the parallelogram in the one figure to the correspondent parallelogram

in the other; that is (by the supposition), in the ultimate ratio of any part of the

one quantity to the correspondent part of the other.

LEMMA V

All homologous sides of similar figures, whether curvilinear or rectilinear, are

proportional; and the areas are as the squares of the homologous sides.

LEMMA VI

If any arc ACB [Fig. 3], given in position, is subtended by its chord AB, and in any
point A, in the middle of the continued curvature, is touched by a right line AD,
produced both ways; then if the points A and B approach one another and meet,

I say, the angle BAD, contained between the chord and the tangent, will be di-

minished in infinitum, and ultimately will vanish.

A D d

For if that angle does not vanish, the arc ACB will contain with the tangent
AD an angle equal to a rectilinear angle; and therefore the curvature at the

point A will not be continued, which is against the supposition.

LEMMA VII

The same things being supposed, I say that the ultimate ratio of the arc, chord, and
tangent, any one to any other, is the ratio of equality. 1

1 In our notation, lim arc ACB/chord AB = 1 , B—>- A.
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For while the point B approaches towards the point A, consider always AB
and AD as produced to the remote points b and d; and parallel to the secant B

D

draw bd ; and let the arc Acb be always similar to the arc ACB. Then, supposing
the points A and B to coincide, the angle dAb will vanish, by the preceding
Lemma; and therefore the right lines Ab, Ad (which are always finite), and the
intermediate arc Acb, will coincide, and become equal among themselves. Where-
fore, the right lines AB, AD, and the intermediate arc ACB (which are always
proportional to the former), will vanish, and ultimately acquire the ratio of
equality. Q.E.D.

Corollary I. Whence if through B we draw BF parallel to the tangent,
[Fig. 4], always cutting any right line AF passing through A in F, this line BF
will be ultimately in the ratio of equality with the evanescent arc ACB; because,
completing the parallelogram AFBD, it is always in a ratio of equality with
AD.

Corollary II. And if through B and A more right lines are drawn, as BE, BD,
AF, AG, cutting the tangent AD and its parallel BF; the ultimate ratio of all

the abscissas AD, AE, BF, BG, and of the chord and arc AB, any one to any
other, will be the ratio of equality.

Corollary III. And therefore in all our reasoning about ultimate ratios, we
may freely use any one of those lines for any other.

LEMMA VIII

If the right lines AR, BR [Fig. 3], with the arc ACB, the chord AB, and the tangent
AD, constitute three triangles RAB, RACB, RAD, and the points A and B
approach and meet: I say, that the ultimate form of these evanescent triangles is that

of similitude, and their ultimate ratio that of equality.

We omit this proof.

LEMMA IX

If a right line AE [Fig. 5], and a curved line ABC, both given in position, cut each
other in a given angle, A; and to that right line, in another given angle, BD, CE
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are ordinately applied
,

2 meeting the curve in B, C; and the points B and C together

approach towards and meet in the point A: I say, that the areas of the triangles

ABD, ACE, will ultimately he to each other as the squares of homologous sides.

9 c

For while the points B, C, approach towards the point A, suppose always AD
to be produced to the remote points d and e, so as Ad, Ae may be proportional

to AD, AE\ and the ordinates db, ec, to be drawn parallel to the ordinates DB
and EC, and meeting AB and AC produced in b and c. Let the curve Abe be

similar to the curve ABC, and draw the right line Ag so as to touch both curves

in A, and cut the ordinates DB, EC, db, ec, in F, C, f, g. Then, supposing the

length Ae to remain the same, let the points B and C meet in the point A
;
and

the angle cAg vanishing, the curvilinear areas Abd, Ace will coincide with the

rectilinear areas Afd, Age

;

and therefore (by Lemma V) will be one to the other in

the duplicate ratio of the sides Ad, Ae. But the areas ABD, ACE are always

proportional to these areas; and so the sides AD, AE are to these sides. And
therefore the areas ABD, ACE are ultimately to each other as the squares of

the sides AD, AE. Q.E.D.

LEMMA X

The spaces which a body describes by any finite force urging it, whether that force is

determined and immutable, or is continually augmented or continually diminished,

are in the very beginning of the motion to each other as the squares of the times.

We omit the proof and the corollaries.

SCHOLIUM

If in comparing with each other indeterminate quantities of different sorts, any

one is said to be directly or inversely as any other, the meaning is, that the

former is augmented or diminished in the same ratio as the latter, or as its

2 Meaning “applied in order.” From this expression, common at the time, our term
ordinate is derived. See Selection V.l, note 1; also Selection IV. 11, note 4.
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reciprocal. And if any one is said to be as any other two or more, directly or

inversely, the meaning is, that the first is augmented or diminished in the ratio

compounded of the ratios in which the others, or the reciprocals of the others,

are augmented or diminished. Thus, if A is said to be as B directly, and C
directly, and D inversely, the meaning is, that A is augmented or diminished in

the same ratio as B-C~, that is to say, that A and ^ are to each other in a

given ratio.

LEMMA XI

The evanescent subtense of the angle of contact, in all curves which at the point of
contact have a finite curvature, is ultimately as the square of the subtense of the

conterminous arc .

3

Case 1 . Let AB [Fig. 6] be that arc, AI) its tangent, BD the subtense of the
angle of contact perpendicular on the tangent, AB the subtense of the arc.

A d D

Draw BG perpendicular to the subtense AB. and AG perpendicular to the tan-

gent AD, meeting in G; then let the points D, B, and G approach to the points
d, b, and g, and suppose I to be the ultimate intersection of the lines BG, AG,
when the points D, B have come to A. It is evident that the distance GI may be
less than any assignable distance. But (from the nature of the circles passing
through the points A, B,G, and through A, b, g),

AB2 = AG- BD, and

Ab2 = Ag-bd.

But because GI may be assumed of less length than any assignable, the ratio of

AG to Ag may be such as to differ from unity by less than any assignable dif-

ference; and therefore the ratio ofAB2 to Ab2 may be such as to differ from the
ratio of BD to bd by less than any assignable difference. Therefore, by Lem. I,

ultimately,

AB2 :Ab2 = BD\bd. Q.E.D.

3 A way of expressing this is that ifAD — x, BD — y, the equation of the curve near A
can be written in the form y = ax2 + |3x

n + • • •

.
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Case 2. Now let BD be inclined to AD in any given angle, and the ultimate

ratio of BD to bd will always be the same as before, and therefore the same with

the ratio ofAB2 to Ab2
. Q.E.D.

Case 3. And if we suppose the angle D not to be given, but that the right line

BD converges to a given point, or is determined by any other condition what-

ever; nevertheless the angles D, d, being determined by the same law, will

always draw nearer to equality, and approach nearer to each other than by any

assigned difference, and therefore, by Lemma I, will at last be equal
;
and therefore

the lines BD, bd are in the same ratio to each other as before. Q.E.D.

Corollary I. Therefore since the tangents AD, Ad, the arcs AB, Ab, and their

sines, BC, be, become ultimately equal to the chords AB, Ab, their squares will

ultimately become as the subtenses BD, bd.

*Corollary II. Their squares are also ultimately as the versed sines of the arcs,

bisecting the chords, and converging to a given point. For those versed sines are

as the subtenses BD, bd.

*Corollary III. And therefore the versed sine is as the square of the time in

which a body will describe the arc with a given velocity.

*Corollary IV. The ultimate proportion,

A ADB: A Adb = AD2
:Ad 2 = DB*:db\

is derived from

AADB-.AAdb = AD- DB-.Ad-db

and from the ultimate proportion

AD2
:Ad 2 = DB:db.

So also is obtained ultimately

A ABC
: A Abe = BC3 :bc3 .

Corollary V. And because DB, db are ultimately parallel and as the squares of

the lines AD, Ad, the ultimate curvilinear areas ADB, Adb will be (by the

nature of the parabola) two-thirds of the rectilinear triangles ADB, Adb, and

the segments AB, Ab will be one-third of the same triangles. And thence those

areas and those segments will be as the squares of the tangents AD, Ad, and also

of the chords and arcs AB, AB.

SCHOLIUM

But we have all along supposed the angle of contact to be neither infinitely

greater nor infinitely less than the angles of contact made by circles and their

tangents; that is, that the curvature at the point A is neither infinitely small nor

infinitely great, and that the interval AJ is of a finite magnitude.
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Now follows a discussion of these angles of contact, between which other intermediate
angles of contact can be established, and so forth .

4 The scholium continues:

These Lemmas are premised to avoid the tediousness of deducing involved
demonstrations ad absurdum, according to the method of the ancient geometers.
For demonstrations are shorter by the method of indivisibles; but because the
hypothesis of indivisibles seems somewhat harsh, and therefore that method is

reckoned less geometrical, I chose rather to reduce the demonstrations of the
following Propositions to the first and last sums and ratios of nascent and
evanescent quantities, that is, to the limits of those sums and ratios, and so to
premise, as short as I could, the demonstrations of those limits. For hereby the
same thing is performed as by the method of indivisibles; and now those prin-

ciples being demonstrated, we may use them with greater safety. Therefore if

hereafter I should happen to consider quantities as made up of particles, or
should use little curved lines for right ones, I would not be understood to mean
indivisibles, but evanescent divisible quantities; not the sums and ratios of
determinate parts, but always the limits of sums and ratios; and that the force

of such demonstrations always depends on the method laid down in the fore-

going Lemmas.

Perhaps it may be objected, that there is no ultimate proportion of evanescent
quantities; because the proportion, before the quantities have vanished, is not
the ultimate, and when they are vanished, is none .

5 But by the same argument
it may be alleged that a body arriving at a certain place, and there stopping, has
no ultimate velocity; because the velocity, before the body comes to the place,

is not its ultimate velocity; when it has arrived, there is none. But the answer is

easy; for by the ultimate velocity is meant that with which the body is moved,
neither before it arrives at its last place and the motion ceases, nor after, but
at the very instant it arrives; that is, that velocity with which the body arrives
at its last place, and with which the motion ceases. And in like manner, by the

4 Newton touches here upon the different types of angles of contact made by straight lines,
tangent circles, and so on. Here he touches the age-old problem of the nature of hornlike
angles (anguli cornuti). It arose in connection with Proposition 16 of the third book of
Euclid’s Elements-. “The straight line drawn at right angles to the diameter of a circle from
its extremity will fall outside the circle, and into the space between the straight line and the
circumference another straight line cannot be interposed; further the angle of the semicircle
is greater, and the remaining angle less, than every acute rectilineal angle.” See T. L. Heath,
The thirteen books of Euclid's Elements (2nd ed.; Dover, New York, 1956), II, 39-43, where
we find an account of the contributions to this question by Proclus, Cardan, Peletier,
Clavius, Viete, and Wallis. See also F. Klein, Elementary mathematics from an advanced
point of view

,
II (Macmillan, New York, 1939), 204, where it is shown that we are dealing

here with non-Archimedean quantities. See also E. Kasner, “The recent theory of the horn
angle,” Scripta Mathematica 11 (1945), 263-267.

Here we see Newton wrestling with the concept of “ultimate ratio of evanescent quan-
tities” and Zeno’s reasoning. It was about this type of argument that Berkeley wrote his
Analyst (Selection V.12). On Zeno s argumentation and the debate around them during the
centuries see F. Cajori, “The history of Zeno’s arguments on motion,” American Mathe-
matical Monthly 22 (1915), nine articles, and “The purpose of Zeno’s arguments on motion,”
Isis 3 (1920), 7-20. We now know—and it is even implicit in Newton—that the concept of
limit can be established without that of “ultimate ratio of evanescent quantities.”



300
|

V NEWTON, LEIBNIZ, AND THEIR SCHOOL

ultimate ratio of evanescent quantities is to be understood the ratio of the

quantities not before they vanish, nor afterwards, but with which they vanish.

In like manner the first ratio of nascent quantities is that with which they begin

to be. And the first or last sum is that with which they begin and cease to be (or

to be augmented or diminished). There is a limit which the velocity at the end of

the motion may attain, but not exceed. This is the ultimate velocity. And there

is the like limit in all quantities and proportions that begin and cease to be. And
since such limits are certain and definite, to determine the same is a problem

strictly geometrical. But whatever is geometrical we may use in determining

and demonstrating any other thing that is also geometrical.

It may also be objected, that if the ultimate ratios of evanescent quantities are

given, their ultimate magnitudes will be also given: and so all quantities will

consist of indivisibles, which is contrary to what Euclid has demonstrated con-

cerning incommensurables, in the tenth Book of his Elements. But this objection

is founded on a false supposition. For those ultimate ratios with which quantities

vanish are not truly the ratios of ultimate quantities, but limits towards which

the ratios of quantities decreasing without limit do always converge; and to

which they approach nearer than by any given difference, but never go beyond,

nor in effect attain to, till the quantities are diminished in infinitum. This thing

will appear more evident in quantities infinitely great. If two quantities, whose

difference is given, be augmented in infinitum, the ultimate ratio of these

quantities will be given, namely, the ratio of equality: but it does not from

thence follow, that the ultimate or greatest quantities themselves, whose ratio

that is, will be given. Therefore if in what follows, for the sake of being more

easily understood, I should happen to mention quantities as least, or evanescent,

or ultimate, you are not to suppose that quantities of any determinate magni-

tude are meant, but such as are conceived to be always diminished without end.

6 NEWTON. GENITA AND MOMENTS

There is a place in the Principia (Book II, Sec. II, between Propositions 7 and 8) where

differentials are introduced by the name of “moments,” which were produced by variable

quantities called “genita.” This was an approach to the concept of function, and we take it

from the same Motte-Cajori translation of the Principia as we used before (pp. 249-251).

It is not easy to understand the meaning attached to moments, whether they are just

“nascent principles” or equivalent to “finite quantities proportional to velocities.” Since

the text from which we have taken our translation is the second edition of the Principia, it

is interesting that the first edition reads: “Moments, as soon as they are of finite magnitude,

cease to be moments. To be given finite bounds is in some measure contradictory to their

continuous increase or decrease,” where our second edition reads: “Finite particles are not

moments, but the very quantities generated by the moments.” Newton continued to

struggle with the problem of the meaning of his moments, as Leibniz did with that of his

differences and “differentials.”

Here, for the first time, Newton explains some of the principles of his calculus of fluxions,

in a section dealing with the motion of bodies that move against a resistance. These proposi-
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tions deal with problems resulting from the integration of (in our notation) differential

equations such as x = g — lex and x = g — lc(x) 2 . It will be seen, however, that Newton
does not use the term “fluxion.”

LEMMA II

The moment of any genitum is equal to the moments of each of the generating sides

multiplied by the indices of the powers of those sides, and by their coefficients

continually.

I call any quantity a genitum 1 which is not made by addition or subtraction
of divers parts, but is generated or produced in arithmetic by the multiplication,

division, or extraction of the root of any terms whatsoever; in geometry by the
finding of contents and sides, or of the extremes and means of proportionals.

Quantities of this kind are products, quotients, roots, rectangles, squares, cubes,

square and cubic sides, and the like. These quantities I here consider as variable
and indetermined, and increasing or decreasing, as it were, by a continual
motion or flux; and I understand their momentary increments or decrements by
the name of moments; so that the increments may be esteemed as added or
affirmative moments; and the decrements as subtracted or negative ones. But
take care not to look upon finite particles as such. Finite particles are not
moments, but the very quantities generated by the moments. We are to conceive
them as the just nascent principles of finite magnitudes. Nor do we in this

Lemma regard the magnitude of the moments, but their first proportion, as
nascent. It will be the same thing, if, instead of moments, we use either the
velocities of the increments and decrements (which may also be called the
motions, mutations, and fluxions of quantities), or any finite quantities pro-
portional to those velocities. The coefficient of any generating side is the quan-
tity which arises by applying the genitum to that side.

Wherefore the sense of the Lemma is, that if the moments of any quantities
A, B, C, &c., increasing or decreasing by a continual flux, or the velocities of the
mutations which are proportional to them, be called a, b, c, &c., the moment or
mutation of the generated rectangle AB will be aB + bA; the moment of the
generated content ABC will be aBC + bAC + cAB; and the moments of the
generated powers A 2

,
A 3

, A 4
, Af A*, Af A>,A~',A~ 2

, A~* will be 2aA, 3aA 2
,

4aA 3
,
\aA *, faA', }aA ~

•
, gaA~‘, —aA~ 2

,
—2aA~ 3

, — \aA~* respectively;

and, in general, that the moment of any power An,m will be — aA (n ~ m>/m
. Also

TO

that the moment of the genitum A 2B will be 2aA

B

+ bA 2
;
the moment of the

generated quantity A 3BiC2 will be 3aA 2BiC2 + 4bA 3B3C2 + 2cA 3BiC; and
A a

the moment of the generated quantity or A 3B~ 2 will be 3aA 2B~ 2 -

2bA 3B~ 3
; and so on. The Lemma is thus demonstrated.

1 A genitum is therefore an expression of one term which is dependent on one variable.
The Motte-Cajori translation is genitum, making the term neuter, but in Latin it is quantitas
genita, a generated quantity.
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Case 1. Any rectangle, as A B, augmented by a continual flux, when, as yet,

there wanted of the sides A and B half their moments \a and lb, was A — \a

into B — \b, or AB — \aB - lbA + \ab\ but as soon as the sides A and B are

augmented by the other half-moments, the rectangle becomes A + la into

B + \b, or AB + \aB + \bA + \ab. From this rectangle subtract the former

rectangle, and there will remain the excess aB + bA

.

Therefore with the whole

increments a and b of the sides, the increment aB + bA of the rectangle is

generated. Q.E.D.

Case 2. Suppose AB always equal to G, and then the moment of the content

ABC or GC (by Case 1) will be gC + cG, that is (putting AB and aB + bA for

G and g), aBC + bAC + cAB. And the reasoning is the same for contents under

ever so many sides. Q.E.D.

Case 3. Suppose the sides A, B, and C, to be always equal among themselves;

and the moment aB + bA, of A 2
,
that is, of the rectangle AB, will be 2aA; and

the moment aBC + bAC + cAB of A 3
,
that is, of the content ABC, will be

3aA z
. And by the same reasoning the moment of any power A n

is naA n ~ 1
.

Q.E.D.

Case 4. Therefore since ^ into A is 1, the moment of multiplied by A,

together with i multiplied by a, will be the moment of 1, that is, nothing.

Therefore the moment ofi
,
or of A ~

\ is -jf . And generally since— into A n

is 1, the moment of multiplied by An together with into naA*' 1 will be

na
nothing. And, therefore, the moment of

-p
or A n will be — j n + 1 •

Q.E.D.

Case 5. And since A* into A* is A, the moment of A* multiplied by 2A* will

be a (by Case 3); and, therefore, the moment of A 5 will be or laA i. And

generally, putting Am,n equal to B, then Am will be equal to Bn
,
and therefore

maAm ~ 1 equal to nbBn ~ 1
,
and rnaA

~ 1 equal to nbB _1
,
or nbA~ mln

;
and therefore

— aA (n ~ m)ln
is equal to b, that is, equal to the moment of A m,n

. Q.E.D.
n

Case 6. Therefore the moment of any genitum AmBn
is the moment of Am

multiplied by Bn
,
together with the moment of Bn multiplied by A m

,
that is,

maAm ~ 1Bn + nbBn ~ 1Am
\
and that whether the indices to and n of the powers

be whole numbers or fractions, affirmative or negative. And the reasoning is the

same for higher powers. Q.E.D.

Corollary I. Hence in quantities continually proportional, if one term is given,

the moments of the rest of the terms will be as the same terms multiplied by the

number of intervals between them and the given term. Let A, B, C, D, E, F be

continually proportional; then if the term C is given, the moments of the rest of

the terms will be among themselves as —2A, — B, D, 2E, 3F 2

2 When A:B — B-.C = C:D = D: E = E :F and c = 0, then C is constant and

a:b:d:e:f= —2A:—B:D:2E: 3F.
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Corollary II. And if in four proportionals the two means are given, the

moments of the extremes will be as those extremes. The same is to be under-

stood of the sides of any given rectangle.

Corollary III. And if the sum or difference of two squares is given, 3 the

moments of the sides will be inversely as the sides.

Now follows in the text that famous Scholium which is different in the first and second

editions of the Principia. In the first edition (1687) Newton mentions the letters which he

and “the very excellent G. W. Leibnizius” had exchanged ten years before (see Selection

V.4), and praises him as coinventor of the calculus. In the second edition (1713) the Scholium

mentions several men who had contributed to the invention, but omits Leibniz. By this

time the priority struggle between Newton and Leibniz was in full swing.

7 NEWTON. QUADRATURE OF CURVES

Newton published the first full exposition of this theory of fluxions in his Tractatus de

quadratura curvarum as an appendix to his Opticks (London, 1704); it was written in 1693.

He has hardly any moments, that is, infinitesimals, here, and uses fluxions and fluents, as

well as his principle of prime and ultimate ratios. He demands great care in their use:

“errores quam minimi in rebus mathematicis non sunt contemnendi” (see no. 6 of the

Introduction). We present here a section of the Tractatus in the translation by J. Stewart,

Two treatises on the quadrature of curves and analysis by equations of an infinite number of

terms, explained (London, 1745).

In no. 5 of the Introduction the characteristic triangle is introduced, and the definition

of a tangent as the limit of a secant.

INTRODUCTION TO THE QUADRATURE OF CURVES

1. I consider mathematical quantities in this place not as consisting of very

small parts; but as described by a continued motion. Lines are described, and

thereby generated not by the apposition of parts, but by the continued motion

of points; superficies by the motion of lines; solids by the motion of superficies;

angles by the rotation of the sides; portions of time by a continual flux: and so

in other quantities. These geneses really take place in the nature of things, and

are daily seen in the motion of bodies. And after this manner the ancients, by
drawing moveable right lines along immoveable right lines, taught the genesis of

rectangles.

3 When A 2 + B2 = const., then a :

b

= + B : A. Newton, who in Book I has used for his

proofs only his theorem of prime and ultimate ratios, in the sections of Book II following his

lemma on genita uses occasionally that part of his fluxional calculus which is expressed by
the lemma, that is, the formula d(AmBnC p • • •) = mAm ~ 1BnCp • • • dA + nAmBn ~ 1Cp • • • dB
+ pAmB nC p ~ 1

• • dC + • • • . Newton’s notation is usually like our own, but occasionally he
writes for A 2 either Aq> or A quad.
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2. Therefore considering that quantities, which increase in equal times, and
by increasing are generated, become greater or less according to the greater or

less velocity with which they increase and are generated; I sought a method of

determining quantities from the velocities of the motions or increments, with

which they are generated; and calling these velocities of the motions or incre-

ments fluxions, and the generated quantities fluents. I fell by degrees upon the

method of fluxions, which I have made use of here in the quadrature of curves,

in the years 1665 and 1666.

3. Fluxions are very nearly as the augments of the fluents generated in equal

but very small particles of time, and, to speak accurately, they are in the first

ratio of the nascent augments; but they may be expounded by any lines which
are proportional to them.

4. Thus if the areas ABC, ABDC [Fig. 1] be described by the ordinates BC,
BD moving along the base AB with an uniform motion, the fluxions of these

areas shall be to one another as the describing ordinates BC and BD, and may
be expounded by these ordinates, because that these ordinates are as the nascent

augments of the areas.

5. Let the ordinate BC advance from its place into any new place be. Complete
the parallelogram BCEb, and draw the right line VTH touching the curve in C,

and meeting the two lines be and BA produced in T and V

:

and Bb, Ec, and Cc
will be the augments now generated of the absciss AB, the ordinate BC and the

curve line ACc\ and the sides of the triangle CET are in the first ratio of these

augments considered as nascent, therefore the fluxions of AB, BC, and AC are

as the sides CE, ET, and CT of that triangle CET

,

and may be expounded by
these same sides, or, which is the same thing, by the sides of the triangle VBC,
which is similar to the triangle CET.

6. It comes to the same purpose to take the fluxions in the ultimate ratio of

the evanescent parts. Draw the right line Cc, and produce it to K. Let the

ordinate be return into its former place BC, and when the points C and c coalesce,

the right line CK will coincide with the tangent CE, and the evanescent triangle

CEc in its ultimate form will become similar to the triangle CET, and its

evanescent sides CE, Ec, and Cc will be ultimately among themselves as the sides

CE, ET, and CT of the other triangle CET are, and therefore the fluxions of the

lines AB, BC, and AC are in this same ratio. If the points C and c are distant
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from one another by any small distance, the right line CK will likewise be distant

from the tangent CH by a small distance. That the right line CK may coincide

with the tangent CH, and the ultimate ratios of the lines CE, Ec, and Cc may
be found, the points C and c ought to coalesce and exactly coincide. The very
smallest errors in mathematical matters are not to be neglected.

7 . By the like way of reasoning, if a circle described with the center B and
radius BC be drawn at right angles along the absciss AB, with an uniform
motion, the fluxion of the generated solid ABC will be as that generating circle,

and the fluxion of its superficies will be as the perimeter of that circle and the

fluxion of the curve line AC jointly. For in whatever time the solid ABC is

generated by drawing that circle along the length of the absciss, in the same
time its superficies is generated by drawing the perimeter of that circle along
the length of the curve AC. You may likewise take the following examples of

this method.

8. Let the right line PB [Fig. 2], revolving about the given pole P, cut another

right line AB given in position: it is required to find the proportion of the fluxions

of these right lines AB and PB.

p

Let the line PB move forward from its place PB into the new place Pb. In
Pb take PC equal to PB, and draw PD to A B in such manner that the angle
bP

D

may be equal to the angle bBC; and because the triangles bBC, bPD are

similar, the augment Bb will be to the augment Cb as Pb to Db. Now let Pb
return into its former place PB, that these augments may evanish, then the
ultimate ratio of these evanescent augments, that is the ultimate ratio of Pb to

Db, shall be the same with that of PB to DB, PDB being then a right angle,

and therefore the fluxion ofAB is to the fluxion of PB in that same ratio.

9.

Let the right line PB, revolving about the given pole P, cut other two right

lines given in position, viz. AB and AE in B and E: the proportion of the fluxions

of these right lines AB and AE is sought.

Let the revolving right line PB [Fig. 3] move forward from its place PB into

A B



306
|

V NEWTON, LEIBNIZ, AND THEIR SCHOOL

the new place Pb, so as to cut the lines AB, AE in the points b and e; and draw
BC parallel to AE meeting Pb in C, and it will be Bb : BC : :Ab:Ae, and
BC :Ee ::PB: PE, and by joining the ratios, Bb:Ee::Ab x PB:Ae x PE. 1

Now let Pb return into its former place PB, and the evanescent augment Bb
will be to the evanescent augment Ee as AB x PB to AE x PE; and therefore
the fluxion of the right line AB is to the fluxion of the right line AE in the same
ratio.

10. Hence if the revolving right line PB cut any curve lines given in position
in the points B and E, and the right lines AB, AE now becoming moveable,
touch these curves in the points of section B and E: the fluxion of the curve,
which the right line AB touches, shall be to the fluxion of the curve, which the
right line AE touches, as AB x PB to AE x PE. The same thing would
happen if the right line P

B

perpetually touched any curve given in position in

the moveable point P.

11. Let the quantity x flow uniformly, and let it be proposed to find the fluxion
of xn .

In the same time that the quantity x, by flowing, becomes x -\- o, the quantity
xn will become {x -f o)

n
,
that is, by the method of infinite series, xn + noxn ~ 1 +

o

+ &c.

n* — n
-ooxn " z + &c. And the augments o and noxn - i ,

n ~ n
H «— ooxn

are to one another as 1 and nxn ~ 1 + oxn 2 + &c.

Now let these augments vanish, and their ultimate ratio will be 1 to nxn ~ 1
.

12. By like ways of reasoning, the fluxions of lines, whether right or curve in
all cases, as likewise the fluxions of superficies, angles, and other quantities, may
be collected by the method of prime and ultimate ratios. Now to institute an
analysis after this manner in finite quantities and investigate the prime or
ultimate ratios of these finite quantities when in their nascent or evanescent
state, is consonant to the geometry of the ancients: and I was willing to show
that, in the method of fluxions, there is no necessity of introducing figures
infinitely small into geometry. Yet the analysis may be performed in any kind
of figures, whether finite or infinitely small, which are imagined similar to the
evanescent figures; as likewise in these figures, which, by the method of indivis-
ibles, use to be reckoned as infinitely small, provided you proceed with due
caution.

From the fluxions to find the fluents, is a much more difficult problem, and the
first step of the solution is equivalent to the quadrature of curves; concerning
which I wrote what follows some considerable time ago.

13. In what follows I consider indeterminate quantities as increasing or
decreasing by a continued motion, that is, as flowing forwards, or backwards,
and I design them by the letters z, y, x, v, and their fluxions or celerities of
increasing I denote by the same letters pointed z, y, x, v. There are likewise
fluxions or mutations more or less swift of these fluxions, which may be called
the second fluxions of the same quantities z, y, x, v, and may be thus designed

an(i fhe first fluxions of these last, or the third fluxions of z, y, x, v,

1 This is Barrow’s notation; see Selection IV.14.
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are thus denoted z, y, %, v: and the fourth fluxions thus i, y, X, v. And after the

same manner that '£, y, x, v are the fluxions of the quantities z, y, x, v, and these

the fluxions of the quantities z, y, x, v\ and these last the fluxions of the quan-

tities z, y, x, v: so the quantities z, y, x, v may be considered as the fluxions of

others, which I shall design thus i, y, x, v; and these as the fluxions of others

z, y, x, v\ and these last still as the fluxions of others f, y , x ,
v. Therefore z, £, z, z,

z, '£, 'i, z, &c. design a series of quantities whereof every one that follows is the

fluxion of the one immediately preceding, and every one that goes before, is a

flowing quantity having that which immediately succeeds, for its fluxion. The

like is the seriesVaz — zz, Vaz — zz, Vaz — zz, Vaz~— zz, Vaz — zz, Vaz — zz;

... . . az + zz az + zz az -f zz az + zz az + zz az + zz „
as likewise the series « > • > , > > , &c.

a — z a — z a — z a — z a — z a — z

14. And it is to be remarked that any preceding quantity in these series is as

the area of a curvilinear figure of which the succeeding is the rectangular

ordinate, and the absciss is z: as Vax — zz the area of a curve, whose ordinate is

V az — zz, and absciss z. The design of all these things will appear in the follow-

ing propositions.

PROPOSITION I. PROBLEM I

15. An equation being given involving any number offlowing quantities, to find

the fluxions. 1

Solution. Let every term of the equation be multiplied by the index of the

power 2 of every flowing quantity that it involves, and in every multiplication

change the side or root of the power into its fluxion, and the aggregate of all the

products with their proper signs, will be the new equation.

16. Explication. Let a, b, c, d, &c. be determinate and invariable quantities,

and let any equation be proposed involving the flowing quantities z, y, x, &c.

as x3 — xy2 + a2
z — b3 = 0. Let the terms be first multiplied by the indexes of

the powers of x, and in every multiplication for the root, or x of one dimension

write x, and the sum of the factors will be Sxx2 — xy2
. Do the same in y, and

there arises — 2xyy. Do the same in z, and there arises aaz. Let the sum of these

products be put equal to nothing, and you’ll have the equation 3xx2 — a'ey
2

— 2xyy + aaz = 0.1 say the relation of the fluxions is defined by this equation.

17. Demonstration. For let o be a very small quantity, and let oz, oy, ox be the

moments, that is the momentaneous synchronal increments of the quantities

z, y, x. And if the flowing quantities are just now z, y, x, then after a moment of

time, being increased by their increments oz, oy, ox, these quantities shall

become z + oz, y + oy, x + ox: which being wrote in the first equation for

z, y, and x, give this equation a;
3 + 3x2ox -f 3xooxx + o3x3 — xy2 — oxy2

— 2xoyy — 2xo2
yy — xo2yy — xo3

yy + a2z + a2oz — b3 = 0.

1 Newton prefers to differentiate equations, but later also differentiates functions, often
given as areas. See the remark of D’Alembert, Selection V.14, p. 343.

2 [Footnote by the translator, Stewart] The word translated here power is dignitas,

dignity, by which must be understood not only perfect, but also imperfect powers or surd
roots, which are expressed in the manner of perfect powers, as is well known, by fractional
indexes. In which sense x112

, x213
, etc. are powers; and f their indexes, and x the side or

root. I use the word power, because dignity is seldom used in English in this sense.
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Subtract the former equation from the latter, divide the remaining equation
by o, and it will be 3xx2 + 3xxox + x3o2 — xy2 — 2xyy — 2xoyy — xoyy

xo yy + a2
z = 0. Let the quantity o be diminished infinitely, and neglecting

the terms which vanish, there will remain ?>xx2 - xy2 - 2xuy + a 2
z = 0

Q.E.D.

18. A fuller explication. After the same manner if the equation were x3 — xy2

+ aaVax - y
2 - b3 = 0, thence would be produced 3x2x - xy2 — 2xyy

+ aaVax - y
2 = 0. Where if you would take away the fluxion VaV^y2

,
put

Vax — y
2 = z, and it will be ax — y

2 = z2
,
and by this proposition a* — 2yy =

2zz, or
2yy = z, that is

ax

- 2*
2/2/ +

2z

a3x — 2a2yy

2
;yy

2Vax yy
= Vo yy. And thence 3*2* — xy2

= 0 .

2v ax — yy
19. And by repeating the operation, you proceed to second, third, and sub-

sequent fluxions. Let zy3 — z
4 + a4 = 0 be an equation proposed, and by the

first operation it becomes zy3 + 3zyy2 - 4za3 = 0; by the second zy3 + 6zyy2

+ 3zyy2 + 6zy2
y - 4zz3 - 12z2z2 = 0, by the third, iy3 + Qzyy2 + 18zy2

y
+ 3zyy2 + 18zyyy + QZy3 _ 4ia3 - 36a222 - 24z3a = 0.

20. But when one proceeds thus to second, third, and following fluxions, it is

proper to consider some quantity as flowing uniformly, and for its first fluxion
to write unity, for the second and subsequent ones, nothing. Let there be given
the equation zy3 — a

4 + ai = 0, as above; and let a flow uniformly, and let its

fluxion be unity: then by the first operation it shall be y
3 + 3zyy2 - 4a3 = 0;

by the second Qyy
2 + 3zyy2 + 6zy2

y - 12a2 = 0; by the third 9yy
2 + 18y

2
y

+ 3zyy2 + \8zyyy + 6zy3 - 24a = 0.

But in equations of this kind it must be conceived that the fluxions in all the
terms are of the same order, i.e., either all of the first order y, a; or all of the
second y, y

2
,
yz, a2

;
or all of the third

jj, yy, yz. y
3

, y
2
z, yz2

,
a3

,
&c. And where the

case is otherwise the order is to be completed by means of the fluxions of a
quantity that flows uniformly, which fluxions are understood. Thus the last

equation, by completing the third order, becomes \)zjjy
2 + I8zy2

y + 3zyy2

+ \8zyyy + 6zy3 — 24za3 = 0.
3

PROPOSITION II. PROBLEM II

22. To find such curves as can be squared.

Let ABC [Fig. 4] be the figure to be found, BC the rectangular ordinate, and
AB the absciss. Produce CB to E, so that BE = 1, and complete the parallelo-

gram ABED: and the fluxions of the areas ABC, ABED shall be as BC and BE.
Assume therefore any equation, by which the relation of the areas may be
defined, and thence the relation of the ordinates BC and BE will be given by the
first proposition. Q.E.I.

The two following propositions afford examples of this.

3 Newton insists on homogeneity, which requires that each term of the equation has the
same number of “pricks.”
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PROPOSITION m. THEOREM I

23. If for the absciss AB and area AE or AB x 1 you write z promiscuously,

and if for e + fz” + gz2 ” + hz3” + &c. you write R

:

let the area of the curve be

z6RA
,
the ordinate BC shall be equal to

[Be + (6 + A7})fz" + (6 + 2Xv )gz

2

” + (6 + 3Av )hz
3” + Ac.^9 - 1^- 1

.

4

24. Demonstration. For let zeRA = v, it will be (by Prop. I) 9zz°~ 1RA

+ \zeRRA ~ 1 = v. For RA in the first term of the equation and z
e in the second

write RR'^ 1 and zze
~ 1

,
and it will become (9zR + AzR)z9 ~ 1RA " 1 = v. But it

was B = e + fz” + gz2” + hz3 ” + &c.: and thence (by Prop. I) it becomes

R = yfzz
"~ 1 + 2r)gzz2v

~ 1 + 'irfizz
3” ~ 1 + &c. which being substituted, and BE

or 1 wrote for z, it becomes

[9e + (9 + Xv )fz” + {9 + 2Xv )gz
2 ” + {9 + SAt^z3

" + Ac.^*" 1^- 1 = v = BC

.

Q.E.D.

In Proposition V Newton indicates interest in the convergence and divergence of series,

and shows how to apply the method of partial fractions in integration, as Leibniz did in

1702 (see Selection II. 10, note 1), but Newton’s solution is not as exhaustive as that of

Leibniz, in particular where he writes that an integral of the form
J
dx:(x + a) cannot be

computed. Newton, like Johann Bernoulli later in his Integral calculus (Selection V.10),

published without change results obtained many years before the date of publication.

Among other propositions is Proposition IV, Theorem II, to find the ordinate BC when
AB = z is the abscissa of a curve with area z

eBA
s“, when R = e + fz” + gz2” + and

S = Jc + Iz” + mz2” +

.

Proposition IX, Theorem VII, is: “The areas of those curves

are equal among themselves, whose ordinates are reciprocally as the fluxions of their abscis-

ses,” 5 with many corollaries. On pp. 24-28 is a tabulation of integrals, divided into two
sets. We reproduce (Fig. 5) the first set, of ten examples; d is a coefficient (not a Leibniz

symbol d) and t is the area
f y dz, without a constant of integration.

The second set, with 33 examples, is entitled “A table of the more simple kind of curves

which may be compared with the ellipsis and hyperbola.” This is similar to what Leibniz

and Bernoulli did, as we can see, for instance, in Selection V.9; we now say that the integral

involves radicals and inverse circular functions.

4 We have modernized Newton’s notation somewhat. He writes X fz" for what we
write as (

9

+ Aij)z” and instead of the square brackets he uses an overbar.
5 From y dx = dx x it follows only that the areas differ by a constant. Newton’s examples

are obtained by substitutions such as * = z’ in algebraic expressions.
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v

A TABLE
Of the more ftrnpk kind of Curves which may be fquared.

Forms of Curves. Areas of the Curves.

I dz'~'z=zy -z' — t.
*» -

II
dz"~' d~- — t nr

—' — t

,'/+»/V

III

‘
i dz'~ x e-\-fz'—y — Where R= Ve+/z«

2 dz 1'-'
>Je-\fz'—y

-4/+
f”dR*= t

'
5 "/

1

3 dz"-'*/e-\fz'=y
i 6t‘—i+z/e’+jo/2

*
2
’
jp . f

•or,/.
^

- JaA*~ xJe-X-fz*—

v

—96r^+ I 44^
2
/*

,,—180^

945'*
~

*

IV-

‘
I
A*- 1

SEP ' £r=.

2
.fe

2’- 1

3
Ac"-' ~y

i6f‘—

!

9/*’,+6/
2
*
2

’' _
, 5

,/. «R— *

A.
-q^'-MR*

2/*"—j6</
SIe^-Ho/5* 3 "

7
io5^*

/

Fig. 5
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Proposition XI contains an evaluation of moments (in our present sense). First Newton
forms a sequence:

Mx
) = jQ f(

x
)
dx

> hix) = Jg
fi(x )

dx, f3(x) =
Jo
/2(*) dx,...,

then a second sequence:

A =
J°

f(x) dx, B =
Jo

x/(x) dx, C =
j

x2f(x) dx, . .
.

,

and a third sequence:

p =
J0 f(

x
)
dx, Q =

[o
~ x)f(x )

dx, R =
jo

(t - x) 2
f(x) dx, .

.

and establishes relations between the terms of these last two sequences; for example,

A D ^ t
2
A. -2tB + CA = P, tA — B — Q, = iR, etc.

A Scholium was added when the Quadrature of curves was published. It opens with a
remark which seems to show that Newton was on the way to the discovery of the Taylor
series. He also shows that differential equations of the form y

in> = f(x), /( y
{n
\ y

,n + 1)
)
= 0 can

be integrated by quadratures. 6 See further H. W. Turnbull, The mathematical discoveries of
Newton (Blackie, London and Glasgow, 1945), chap. IV. An Italian translation of the

Quadratura curvarum is found in G. Castelnuovo, Le origini del calcolo infinitesimale

(Zanichelli, Bologna, 1930), 113-145.

There exists, as we have seen (Selection V.4), another text by Newton on the same
subject, the Methodus fluxionum, written in 1671, but published only in 1736 in English

translation as Method of fluxions. It represents an earlier phase in Newton’s development,
differing from that reflected in the Quadrature of curves. In the Method of fluxions we find

the moments again (pp. 32-33):

The moments of flowing quantities (that is, their indefinitely small parts, by
the accession of which, in indefinitely small portions of time, they are continually

increased) are as the velocities of their flowing or increasing. Wherefore, if the

moment of any one, as x, be represented by the product of its celerity x into an
infinitely small quantity o (that is, by xo), the moments of the others, v, y, z will

be represented by vo, yo, io, because vo, xo, yo, and zo are to each other as

v, x, y, and z.

6 Example: a2v = av + «2 , homogenized a2v = avz + v2i; with v = 1 it becomes
z = a2

l(av + v2 ).
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Newton considered the equation x3 - ax2 + axy - y
3 = 0 and changed x into x + xo,

y into y + yo. He obtained (after division by o) 3xx2 + 3x2ox + x2oo - 2axx - ax2o

+ axy + ayx + axyo — 3yy
2 — 3y

2oy — y
3oo = 0 and continued:

But whereas o is supposed to be indefinitely little, that it may represent the
moments of quantities, the terms that are multiplied by it will be nothing in

respect to the rest [termini in earn ducti pro nihilo possunt haberi cum aliis

collato]; therefore I reject them, and there remains

3x2x — 2axx + axy -f ayx — 3yy
2 = 0.

The Method of Fluxions has been republished in the Mathematical works of Isaac Newton,
ed. D. T. Whiteside (Johnson Reprint Co., New York, London, 1964), I, 29-137.

8 L’HOPITAL. THE ANALYSIS OF THE INFINITESIMALLY SMALL

In the development of the calculus Leibniz received invaluable aid from the brothers
Jakob (James, Jacques) Bernoulli (1654-1705) and Johann (John, Jean) Bernoulli (1667-

1748). They belonged to a prominent merchant family in Basel, Switzerland. Jakob, in

1687, became professor of mathematics in the university of his home town; Johann, in 1695,

professor of mathematics in the university of Groningen in the Netherlands. On his brother’s

death Johann was elected to fill his place at Basel, and here he stayed until his death, in his

later years enjoying the reputation of an elder statesman in the field of mathematics, and
proud of the achievements of his pupil Leonhard Euler.

The result of the collaboration of the brothers with Leibniz, which began in 1685 after

Leibniz’s first paper on his calculus in the Acta Eruditorum of 1684 (see Selection V.l), was
the creation of almost the whole of the present elementary calculus before the end of the
seventeenth century. Many of the problems they solved led to ordinary differential equa-
tions and even into the calculus of variations (see Selections V.19, 20, 21). A first exposition
of the calculus can be found in lectures given by Johann during 1691-92, which were not
published until 1922: Lectiones de calculo dijferentialium, ed. P. Schafheitlin (Basel, 1922);
German translation in Ostwald’s Klassiker, No. 211 (Engelmann, Leipzig, 1924). The inte-

gral calculus was published during Johann’s lifetime in his Opera omnia (Lausanne, Geneva),
III (1742); German translation by G. Kowalewski in Ostwald’s Klassiker, No. 194 (1914).

However, many of Bernoulli’s and Leibniz’s ideas on the differential calculus were made
public in a book entitled Analyse des infiniment petits (Paris, 1696) by Guillaume Framjois
Antoine de l’Hopital (1661-1701). The author, a French nobleman and amateur mathe-
matician, freely acknowledged his indebtedness to his teachers: “I have made free use of
their discoveries [Je me suis servi sans faijon de leurs decouvertes], so that I frankly return
to them whatever they please to claim as their own.” The book is best known because of its

rule for expressions of the form Johann Bernoulli, after L’Hopital’s death, claimed this

rule for his own (Acta Eruditorum, August 1704).
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The exact relation between L’Hopital and Bernoulli long remained a subject of conjecture,
but it has recently been clarified through the publication of the correspondence between the
two men: Johann Bernoulli, Briefwechsel, ed. 0. Spiess (Birkhauser, Basel), I (1955),
235-236. L Hopital, a good mathematician in his own right, found young Johann Bernoulli
willing to tutor him in the new calculus, and, for a financial allowance, to communicate to
him exclusively some of his (Bernoulli’s) discoveries. The rule for % is contained in a letter

of Bernoulli’s to L’Hopital of July 22, 1694; see D. J. Struik, Mathematics Teacher 56 (1963),
257—.260. On L Hopital see also J . L. Coolidge, The mathematics of great amateurs (Clarendon
Press, Oxford, 1949; Dover, New York, 1963), chap. 12, and C. B. Boyer, Mathematics
Teacher 39 (1946), 159-167.

Here follow certain sections of L’Hopital’s book in the translation by E. Stone, The
method offluxions both direct and inverse (London, 1730). However, where Stone changed to
the Newton notation we have changed back to the original. This means that where Stone
has ‘fluxion’ we have “differential” (the original has “difference”), and Stone’s x has been
changed back to dx. L’Hopital’s word for “ordinate” is, as was customary for a long time,
“appliquee.” For “abscissa” he uses “coupee,” the French translation of the term.

PART I. SECTION I. OF FINDING THE DIFFERENTIALS OF QUANTITIES

1. Definition I. Variable quantities are those that continually increase or decrease;

and constant or standing quantities, are those that continue the same while others

vary. As the ordinates and abscisses of a parabola are variable quantities, but
the parameter is a constant or standing quantity.

Definition II. The infinitely small part whereby a variable quantity is continually

increased or decreased, is called the differential of that quantity.

For example: let there be any curve line AMB [Fig. 1] whose axis or diameter
is the line AC, and let the right line PM be an ordinate, and the right line pm
another infinitely near to the former.

Now if you draw the right line MR parallel to AC, and the chords AM, Am;
and about the centre A with the distance AM, you describe the small circular

arch MS: then shall Pp be the differential of PA; Rm the differential of Pm;
Sm the differential of AM

;

and Mm the differential of the arch AM. In like

manner, the little triangle MAm, whose base is the arch Mm, shall be the dif-

ferential of the segment AM

;

and the small space MPpm will be the differential

of the space contained under the right lines AP, PM, and the arch AM.
Corollary

.

It is manifest, that the differential of a constant quantity (which
is always one of the initial letters a, b, c, etc. of the alphabet) is 0: or (which is

all one) that constant quantities have no differentials.

Scholium. The differential of a variable quantity is expressed by the note or
characteristic d, and to avoid confusion this note d will have no other use in the
sequence of this calculus. And [Fig. 1] if you call the variable quantities AP, x;

PM, y; AM, z; the arch AM, u; the mixtlined space APM, s; and the segment
AM, t: then will dx express the value of Pp, dy the value of RM, dz the value of
Sm, du the value of the small arch Mm, ds the value of the little space MPpm,
and du the value of the small mixtlined triangle MAm.
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2. Postulate I. Grant that two quantities, whose difference is an infinitely

small quantity, may be taken (or used) indifferently for each other: or (which is

the same thing) that a quantity, which is increased or decreased only by an
infinitely small quantity, may be considered as remaining the same.

For example: grant that Ap may be taken for AP; pm for PM
;
the space

Apm for APM

;

the small space MPpm for the small rectangle MPpR; the small

sector AMS for the small triangle AMm; the angle pAm for the angle PAM, etc.

3. Postulate II. Grant that a curve line may be considered as the assemblage
of an infinite number of infinitely small right lines: or (which is the same thing)

as a polygon of an infinite number of sides, each of an infinitely small length,

which determine the curvature of the line by the angles they make with each
other [Fig. 2],

For example: grant that the part Mm of the curve, and the circular arch MS,
may be considered as straight lines, on account of their being infinitely small,

so that the little triangle mSM may be looked upon as a right-lined triangle.

4.

Proposition I. To find the differentials of simple quantities connected together

with the signs + and —

.

It is required to find the differentials of a + x + y — z. If you suppose x to

increase by an infinitely small part, viz. till it becomes x + dx; then will y
become y + dy; and z, z + dz: and the constant quantity a will still be the same
a. So that the given quantity a + x + y — z will become a + x + dx + y + dy
— z — dz; and the differential of it (which will be had in taking it from this last

expression) will be dx + dy — dz; and so of others. From whence we have the

following
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Rule I. For finding the differentials of simple quantities connected together
with the signs + and —

.

Find the differential of each term of the quantity proposed; which connected
together by the same respective signs will give another quantity, which will be
the differential of that given.

5. Proposition II. To find the differentials of the product of several quantities

multiplied, or drawn into each other.

The differential of xy is y dx + x dy: for y becomes y + dy, when x becomes
x + dx; and therefore xy then becomes xy + y dx + x dy + dx dy. Which is the
product of x + dx into y + dy, and the differential thereof will be y dx + x dy
+ dxdy, that is, y dx + x dy. because dx dy is a quantity infinitely small, in

respect of the other terms y dx and x dy: For if, for example, you divide y dx
and dx dy by dx, we shall have the quotients y and dx, the latter of which is

infinitely less than the former.

Whence it follows, that the differential of the product of two quantities, is

equal to the product of the differential of the first of those quantities into the
second plus the product of the differential of the second into the first.

Now follows the application of these propositions: rules of differentiation and integration
for elementary functions, tangency, maxima and minima, curvature, and envelopes, applied
to many curves of the day. The radius of curvature is given by the formula

(
dx2 + dififf

— dxd dy. Then comes the rule for § as follows:

SECTION IX. THE SOLUTION OF SOME PROBLEMS DEPENDING ON THE
METHODS AFOREGOING

163. Proposition I. Let AMD [Fig. 3] be a curve (AP = x, PM = y, AB = a)

of such a nature, that the value of the ordinate y is expressed by a fraction, the

numerator and denominator of which, do each of them become 0 when x = a, viz.
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when the point P coincides with the given point B. It is required to find what will

then be the value of the ordinate BD.
Let ANB, COB

,

be two curves (having the line A B as a common axis) of such

a nature, that the ordinate PN expresses the numerator, and the ordinate PO
the denominator of the general fraction representing any ordinate PM

:

so that

AB x PN . .

then it is manifest, that these two curves will meet onePM =
PO

another in the point B; since by the supposition PN, PO do each become 0 when
the point P falls in B. This being supposed, if an ordinate bd be imagined
infinitely near to BD, cutting the curves ANB, COB, in the points/, g\ then will

AB x bf
bd = —

, which will be equal to BD. Now our business is only to find the

relation of bg to bf. In order thereto it is manifest, when the absciss A P becomes
AB, the ordinates PN, PO will be 0, and when AP becomes Ah, they do
become bf, bg. Whence it follows, that the said ordinates bf, bg, themselves, are

the differentials of the ordinates in B and b, with regard to the curves ANB,
COB- and consequently, if the differential of the numerator be found, and that

be divided by the differential of the denominator, after having made x = a =
Ab or AB. we shall have the value of the ordinates bd or BD sought. Which
was to be found.

164. Example I. Let y = V2a3x — x* a^aa. i= Now it is manifest, when
a — ax°

x = a, that the numerator and denominator of the fraction will each be equal

a3

to 0. Therefore, we must assume the differential of the numerator

aa dx
and divide it by the differential of the denominator —

i
3 dx — 2x3 dx

V'2a3x — x

3a dx

having made x = a, viz. divide — %a dx by — 1 dx;

\&a = BD.

4$a2x

and there comes

after

out

aa ax
165. Let y = -= . We find y = 2a, when x = a. We could solve this

a — V ax

example without need of the calculus of differentials in this way.
Having taken away the incommensurables, we shall have aaxx + 2aaxy

— axyy — 2

a

3x + ai + aayy — 2

a

3
y = 0, which being divided by x — a, re-

duces to aax — a3 + 2aay — ayy = 0, and substituting a for x, we obtain as

before y — 2a.

9 JAKOB BERNOULLI. SEQUENCES AND SERIES

The early success of Leibniz’s calculus was due to his collaboration with the brothers
Bernoulli, who were among the earliest students of Leibniz’s mathematical ideas and

1 This example was communicated to L’Hopital by Johann Bernoulli in his letter of July

22, 1694. Another example of Bernoulli’s is y = ax ~ ^ for x — a Then y = 3a.
a —
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developed, with Leibniz, such a productivity that by 1700 they had obtained most of what
we now call the elementary differential and integral calculus, with the beginnings of ordinary
differential equations and the calculus of variations. Most of their work appeared with that
of Leibniz, in the Acta Eruditorunr, Jakob’s papers were collected in the Opera, ed. G.
Cramer (2 vols.; Geneva, 1744), and Johann’s in the Opera omnia, ed. G. Cramer (4 vols.;

Lausanne, 1742). Jakob also wrote a book on probability, called Ars conjectandi (Basel,

1713), in which we find not only the “Bernoulli theorem ” in probability, but also (pp. 97-99)
the “Bernoulli numbers.” He derived them as an extension of the work of Wallis, who had
given the value of l

c + 2C + • • +nc
(c a positive integer) for large n (Selection IV.13) as

close to [l/(c + 1 )]m c + 1
. Bernoulli then computes the precise value of l

c + 2C + •
• + nc as

follows (in the translation of J. Ginsburg in Smith, Source booh, 85-90):

Let the series of natural numbers 1, 2, 3, 4, 5, etc. up to n be given, and let it

be required to find their sum, the sum of the squares, cubes, etc. Since in the
table of combinations the general term of the second column is n — 1 and the

sum of all terms, that is, all n — 1, or
j
n — 1 in consequence of above is

1

n.n — 1

1.2

nn — n

2

The sum
j
n — 1 or

Therefore

But
J 1 (the sum of all units) = n. Therefore the sum of all n or

j

n = — + n = \nn +

A term of the third column is generally taken to be

nn — nnn — n
4- n = \nn + \n.

n — 1 .n — 2

L2
nn — 3n + 2

2

and the sum of all terms (that is, of all (nn — 3n + 2)/2) is

n.n — 1 . n — 2 n3 — 3nn + 2n

61.2.3

1 Bernoulli has shown before that 1 + 2 + • +n
where we use the symbol 2-

= Jra(« — 1). He uses the symbol J
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We will have then that

n2 — in + 2

or

and

j
inn -

J
\n + J

1 = to
3 — 'inn + 2n

6

/

but

and

,
n3 — inn + 2n f„ f

inn = +
J
\n -

J
1

;

jin =
§ J

n = fnn + |r,

Substituting, we have

n3 — inn + 2n inn + in

j
Inn -

6
— n = in3 + \nn + j

\n,

of which the double
J
nn (the sum of the squares of all n) = \n

3 + \nn + \n.

A term of the fourth column is generally

n — \ .n — 2.n — 3 n3 — Qnn + lire — 6

rx3
=

6
’

and the sum of all terms is

n.n - l.n - 2.n - 3 w4 - 6w3 + linn - 6n
1.2. 3. 4 24

It must certainly be that

/

n3 — 6nn + llw — 6

6

that is

jin3 ~ fnn+ j -
|

1 =
w4 — 6»3 + ll»w — 6n

24
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Hence

Jk =
6n3 + linn — 6n

24 + j
nn — j-(tn +

J
1.

And before it was found that
J
nn = in3 + \nn + \n

, J
“n or -if f

n =

+ \\n, and
J

1 = n. When all substitutions are made, the following

results

:

I
w =

=

4 — 6n3 + linn — 6n

24

*w4 + + Ysnn;

+ in3 + inn + \n {in + n

or, multiplying by 6,

J
n3 = \n4 + \n3 + \nn.

Thus we can step by step reach higher and higher powers and with slight

effort form the following table. 2

Sums of Powers

n = {nn + in,

nn = \n3 + inn + in,

n3 K + in3 + \nn,

w4 in5 + i«4 CO

£tH|CO+ * 3 o n,

n5
- in6 + in5 + * — Tinn,

ne = w + in6 + in
5 * -in3 *4- JuM

4 2

n 7 in8 + in7 + Tin9 * - itni * + YiUn,

n8 = in9 + in8 + 1n
1 * - jfjW

5 * + §n
3 * — son,

n9 = To«
10 + in9 + |n8 * - jV6 * + {n* * — itnn,

n10 = iW 1 + in10 + >9 * — In’ * + 1«5 * — in3 * + -n.

Whoever will examine the series as to their regularity may be able to continue

the table. Taking c to be the power of any exponent, the sum of all nc or

f 1 c
nc =

T n
c + 1 + {nc + - Anc ~ x +

J c + 1 2

c.c — l.c — 2
Bnc ~

+

2.3.4

c.c — l.c — 2.c — 3.c — 4

2 . 3 . 4 . 5.

6

Cnc

c.c — l.c — 2.c — 3.c — 4.c — 5.c — 6 ^ 7
-I- Dn^

2 . 3 . 4 . 5 . 6 . 7.

8

The symbol * indicates that there is a term with coefficient zero.
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and so on, the exponents ofn continually decreasing by 2 until n or nn is reached.
The capital letters A, B, C

,
D denote in order the coefficients of the last terms

in the expressions forj nn,
j
n\j n6

,j n
B

, namely, A is equal to 1, B is equal to
~

3 o< C is equal to D is equai to — ^-g.

These coefficients are such that each one completes the others in the same
expression to unity. Thus D must have the value - because a + | + § _ /5

-

+ I + ( + D) — -fg = 1.

With the help of this table it took me less than half of a quarter of an hour to
find that the tenth powers of the first 1000 numbers being added together will

yield the sum

91 ,409,924,241 ,424,243,424,241 ,924,242,500

From this it will become clear how useless was the work of Ismael Bullialdus 3

spent on the compilation of his voluminous Arithmetica infinitorum in which he
did nothing more than compute with immense labor the sums of the first six
powers, which is only a part of what we have accomplished in the space of a
single page.

Between 1689 and 1704, Bernoulli published five papers on infinite series, a subject on
which much had already been written. His papers contain new results, or results he perhaps
considered new. They were republished in the Opera (1744), and German translation by
G. Kowalewski exists in Ostwald’s Klassiker, No. 171 (Engelmann, Leipzig, 1909). We
translate here a section on the harmonic series, taken from the first paper, Proportiones
arithmeticae de seriebus infinitis earumque summa finita (Basel, 1689; Opera, I, 375-402),
together with the verses with which it opens. The divergence of the harmonic series was
demonstrated as early as the fourteenth century by Nicole Oresme in his Questiones super
geometriam Euclidis (ed. H. L. L. Busard; Brill, Leiden, 1961), p. 6; Paraphrase, p. 76 (see
Selection IH.l), and a proof was published by P. Mengoli, Novae quadraturae arithmeticae
(Bologna, 1650). Oresme’s discussion is as follows (it follows the discussion of other infinite
series)

:

Upon addition of nonproportional parts in a proportio minoris inaequalitatis

[decrease of terms in ratio < J] the whole may become infinite. Add to a mag-
nitude of 1 foot: \, J, | foot, etc.; the sum of which is infinite. In fact, it is pos-
sible to form an infinite number of groups of terms with a sum greater than 1

.

Thus | | is greater than | [quia 4a
et 3a sunt plus quam una medietas], similarly

5 + 0 + v + 8 is greater than i | + fo + fr + • • + f6
- is greater than j,

and so in infinitum.

3
I. Bullialdus or Boulliou (1605-1694), a French astronomer, wrote Opus novum ad

arithmeticum infinitorum (Paris, 1682).
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This way of reasoning is like the modern one; that of the Bernoullis is somewhat different.

Here follows part of Jakob’s text.

Ut non finitam seriem finita coercet

Summula et in nullo limite limes adest:

Sic modico immensi vestigia Numinis haerent

Corpore et augusto limite limes abest.

Cernere in immense parvum, die, quanta voluptas!

In parvo immensum cernere, quanta, Deum

!

4

The sum of an infinite series of harmonic proportionals

i + 2 + i + i + s etc.

is infinite.

My brother was the first to observe it:
6 because after having found, in the way

explained before, the sum

£ + i + t*" + To + 'To etc.

he also wanted to see what becomes of the series

2 + t + t£ + To + To etc.

if it is solved with the method of Art. XIV. 6 Then he found the truth of the

theorem from the clear contradiction which follows if it is assumed that the

harmonic series has a finite sum.

4 Just as a finite little sum embraces the infinite series, and a limit exists where there is no
limit: so the vestiges of the immense Mind cling to the modest body, and there exists no
limit within the narrow limit. O say, what glory it is to recognize the small in the immense

!

What glory to recognize in the small the immensity of God

!

5 The reasoning of Johann Bernoulli can be found in his Opera omnia, IV, 8, in a section

entitled “De seriebus varia, Corollarium III,” translated in Ostwald’s Klassiker, No. 171,

p. 116.
6 The reasoning of Jakob’s Art. XIV, applied to the case of a harmonic series, is as follows.

Let

N = i + i + i + J + i +•••;

then

hence

P — N — 1 — i + I + f + i + £+ -- -;

N - P = 1 = (i - i) + (i — J) + (* — i) + (i — *) + (* — «1111
“ 1.2

+
2.3

+
3.4

+
5.6

+ ' '

(footnote continued)
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Indeed, he observed that the

Series ^ = |+ i + i + i + i + a etc.

changes into

Series B = } + f + * + A + * + * etc. = C + 7J + + F etc.

when the separate fractions are changed into others with the numerators
1

, 2
,
3

,
4

, etc.

Here

@ =
i + | + Ys + 2

X
o + fo + '42 etc. = 1 (as proved before)

when the separate fractions are changed into others with the numerators 1 , 2, 3, 4,
etc.

D — + i + iV + -i- _L -I- _L _i_20' 30 * 42 etc. = C —
1

II
tO|M

E = + T2 + -i- -i- _L_ 120' 30' 42 etc. = B — i = b
F = -i- 4- -i- J_ -1

20 ' 30' 42 etc. = E —
etc. = etc.

i

1 2 = b

from which it follows that

-® = I+i + i + j etc. = A,

so that a part would be equal to the whole if the sum were finite.

When he showed it to me, I gave a proof by showing in the following way that
the sum of the infinite harmonic series

i i + 3 + £ etc.

surpasses any given number, and hence is infinite, after Proposition II. 7 [To
prove it] let N be a given number as large as you like. Take a group of terms
away from the beginning of the series, of which the sum is equal to or larger than
one, which is a unity contained in the number N. From the remaining terms take

We cannot accept this reasoning, since N is not a finite number, but the proof can be made
acceptable by the following modification. Let

111 1

*"“I +
2
+

3
+ "' + »’

then

hence

(S" 1)_1_
r2 +

2
1
3
+

3
1
4
+ --- + ^-[) + ^

1 = lim [I + I + — + . .
. + ] 1

.

n~* oo 1.2 6 12 n(n — 1)J
r Proposition II : That which is greater than any given quantity is infinite.
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away again a group of terms of which the sum is larger than another unity, and
repeat this procedure, if possible, as often as there are unities in the number N.

Then all the separated terms together will surpass the given number, and the

whole series will a fortiori surpass it.

When you deny that after some terms have been taken away the other terms

can surpass unity, then let 1 : a be the first term remaining after the last separa-

tion. The terms following 1 : a are 1
:
(a + 1), 1

:
(a + 2), 1

:
(a + 3), etc. Now

form a geometric progression starting with the first two members 1 : a and
1

:
(a + 1). The terms in this progression following the second term are then

smaller than the corresponding terms in the harmonic progression since they

have the larger denominator (cf. Proposition IV). 8 Continue the geometric pro-

gression for so long as the terms are larger than 1 : a2 (this can be done by a

finite number of steps, since a is a finite number). Then this finite geometric

series becomes equal to 1 ,
according to VIII. 9 The harmonic series with as many

terms will therefore surpass unity. Q.E.D.

Corollary 1. If it be permitted to take a jump into geometry, then it also

follows that the area between a hyperbola and its asymptotes is infinite. Let us

divide [Fig. 1] an asymptote into an infinite number of equal parts, beginning

at the center A. Let the points dividing the parts be B, C, D, E, . .

.

Through
them let us draw to the curve the lines BM, CN, DO, EP, etc. parallel to the

other asymptote and let us complete the parallelograms AM, BN, CO, DP, etc.

Since their bases are equal they will be in the same proportion as their altitudes,

Fig. 1

8 Proposition IV states that if the numbers A, B, C, D, E, . . . form a geometric progres-
sion, and A, B, F, O, H, . . . an arithmetic one with the same initial terms A, B, then 0 > F,
D > O, E > H, and so on. This is shown by applying the theorem in Euclid, Elements,
Book V, Prop. 25, that from a : b = c : d it follows that a + d>6 + cifois the largest,

d the smallest number of the proportion (all positive). Hence from A : B = B :C = C :D =
D :E it follows that A + C > 2B = A + F, hence G > F, and so on.

9 Proposition VIII gives the sum of n terms of a geometric series. The reasoning is as11 1 \ r r2
follows, in our present notation : We replace—I

1 u . .
. bv—I

1 u . .

.

a a + 1 o + 2 cl a a

where r = — —
j

, and continue the sum until the last term of the geometric series

1
1

• ^ ^5
, or ar" 1 < 1 ;

the sum s„ of the n terms of this series is

1 1 - rn a + 1 a + 1 / r\
*n = = (1 - f' & |l = 1.

a l — r a a \ a)
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that is, as the segments BM, CN, OD, EP, etc. or as * i
\ etc., as follows

from the nature of the hyperbola. But still, since we have shown that the sum
i + i + i + i etc. is infinite, the sum of the parallelograms AM, BN, CO, DP,
etc., will also be infinite, and hence for even stronger reason the hyperbolic area
in which lie these parallelograms. 10

10 JOHANN BERNOULLI. INTEGRATION

L’Hopital’s book (see Selection V.8) can serve to show how Johann Bernoulli taught the
differential calculus in 1691/92. From Bernoulli’s Opera omnia, III, 305-558, we give here a
translation of some of his lessons on integral calculus. It is clear from the whole text that
Bernoulli, when he prepared his own Opera, simply took his manuscript of c. 1691 and left
it practically unchanged, adding some modifications. This explains how at first he did not
know what to do with the integral of 1/x, but later in the text corrected himself. The title of
the work is Lectiones mathematicae de methodo integralium, aliisque conscriptae in usum III.

Marchionis Hospitalii cum auctor Parisiis ageret annis 1691 et 1692 (Mathematical lectures
on the method of integrals, and on other subjects written for the use of the Marquis
de L’Hopital, as the author gave them in Paris during 1691 and 1692). A partial German
translation exists in Ostwald’s Klassilcer

,

No. 194 (Engelmann, Leipzig, 1914).

FIRST LECTURE. ON THE METHOD OF INTEGRALS AND OTHER
MATTERS

We have seen how to find the differentials of quantities. 1 Now we shall show
inversely how the integrals of the differentials are found, that is, those quan-
tities, from which the differentials originate. It is known from what I have said
that dx is the differential of x, x dx the differential of \xx or \xx + or — a
constant quantity

, xx dx the differential of lx
3 + or — a constant quantity,

and x3 dx the differential of lx
4 + or - a constant quantity. Equally:

a dx is the differential

ax dx „ „

axx dx „ „

ax3 dx „ „ ,,

of ax etc.

, , laxx ,

,

„ \ax3
„

, ,
lax4

,

,

From this the general Rule can thus be formulated:

axp dx is the differential of the quantity —-

—

J
p + 1

xp + 1

10 The fact that this area is infinite has been known ever since Torricelli communicated
several of his results to various mathematicians during 1646-1647; see “De infinitis hyper-
bolis,” Opere (3 vols.; Monfanari, Faenza, 1919), I, 191-195 (Selection IV.9). We find this
theorem first published in N. Mercator, Logarithmotechnica (London, 1668).

1 This refers to the first part of the lectures, which were published only in 1922; see the
introduction to Selection V.8 (L’Hopital).
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If, therefore, we inquire into the integral of a differential we must primarily

find out whether the given quantity is the product of a differential and a

multiple of its absolute quantity 2 raised to a certain power. This is a sign that

we can find the integral by the above-mentioned rule. If, for example, the

integral ofdyV(a + y) has to be found, then I observe first that dy is multiplied

by a multiple of its absolute quantity
(
a + y) raised to the power J; then, by

the above-mentioned rule I inquire into its integral and find

rrjn; (
a + y)i+1 > that is i(« + yW(« + y)-

Likewise we find the integral of x dxi/ (a2 + x2
), which is

-j— j- (a2 + *2
)*
+1 = §(a2 + x2

)^/ (a
2 + x2

),

the integral of dx : V(a + y) equal to 2V(a + y), the integral of dx:x equal to

Note that sometimes quantities occur whose integrals at first sight cannot be

found by this rule. But they are easily found after a certain change, as in the

following cases.

1. If we write instead of dxV (a2xx + x4
)
the expression xdxV(a2 + xx),

then the integral is found to be (\a2 + %xx)V (a2 + xx). And if instead of

dxV(a3 + 3a2* + 3axx + x3
)
we write (a dx + x dx)V(a + x), then the inte-

gral is found to be f(a
2 + 2ax + xx)V{a + x).

2. It also happens the other way: that one or more letters have to be placed

under the square-root sign before integration is possible, as in the following

expression

:

(3a*3 dx + 4xi dx)V(ax + **).

This, it seems, cannot be integrated by our rule. But if we place one x under the

square-root sign, then the expression becomes

(3a** dx + 4*3 dx)V(ax3 + *4 ),

and the integral of this differential can be found by our rule. It is

f(a*
3

-f *4)\/(ax3 + *4
).

2 This term “absolute quantity” is explained by the examples; thus in * dx$a2 + xx the
“absolute quantity” is z = a2 + xx, since the integrand is a multiple of dzil3 .

3
J dx-.x had already been correctly discussed in Leibniz’s first paper of 1684 (Selection

V.l). Bernoulli later corrected himself; see note 5.
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3.

If a fraction occurs, of which the denominator is a square, a cube, or
another power, then we must assume its square root to be the absolute quantity.

So in

x dx

a4 + 2a2xx + x4

we choose a2 + xx as the absolute quantity, and we get — 1
:
(2a2 + 2xx). If we

had chosen a4 + 2a2xx + xi as the absolute quantity, then we could not have
obtained the integral of the fraction.

4.

If for two quantities the integrals cannot be found separately then it may
happen that the integral of their combination can be found. Take, for instance,

a dx x dx

V(2ax + xx) V(2ax + xx)

Neither of the two terms yields an integral. Their sum, however, ,

a x dx

V(2ax + xx)
’

gives V(2ax + xx) for its integral. 4

5. A fraction sometimes seems not to have an integral; but it may happen that
multiplication of numerator and denominator by the same quantity will give
an integral that can easily be obtained. Take, for instance,

(adx + x dx) : V(3a + 2x).

Multiplication of numerator and denominator by x gives

(ax dx + xx dx ) : V(3axx + 2x3 ),

and its integral is (3axx + 2x3
).

6. Then again, by dividing numerator and denominator by the same quantity

we may obtain an integral. For example axx dx : \/

(

a2xx + a;
4
); by dividing both

terms by x we get ax dx : 'V'
(
a 2 + xx)\ and its integral is a X (a2 + xx) according

to the rule.

After another section, no. 7, Bernoulli adds a Monitum:

However, it is as difficult to find the integral of any differential as it is easy to
find the differential of any quantity. Sometimes it is not even certain whether
or not we can find the integral of a given quantity. I dare say at any rate that

4 This idea proved very helpful in tackling questions pertaining to elliptic integrals.
See Selection V.18.
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any quantity, integral or rational, that is multiplied or divided by xpV(a2 - xx),

xp\/
(ax — xx), xvV(a2 + xx) can be integrated or its integration can be

reduced to a quadrature of a circle or of a hyperbola. 5 We shall show this in
what follows.

We thus have in general to ascertain carefully whether the given quantity to
be integrated can, by multiplication or division or the taking of the root, be
reduced to a quantity that is the product of one of the roots multiplied by a
rational or integral quantity. If we can accomplish this, then we can promptly
find either the integral of the given quantity or else that it depends on and can
be reduced to the quadrature of the circle or the hyperbola. For example, let

(
a3 + axx — x3

)
dx a + x

be given to be integrated. At first it seems that its integral cannot be computed
and has no relation to the squaring of the circle. If, however, we assume for the
absolute quantity the expression following the -\/ sign, which is the fraction
(a + x) : x, then its differential is also a fraction, so that according to the rule
nothing can be derived from it. To avoid this, I multiply the numerator and
denominator of the irrational fraction by the numerator, then connect the
product of the numerator by itself to the rational part of the quantity, so that
I get a fraction of which the numerator is rational and the denominator irra-

tional; in fact, we obtain

a + x _ (
a4 + a2xx + a3x — x*) dx(a3 + axx — x3

V(ax + xx)

This gives me the clue to the nature of this integral, whether it is obtainable or
reducible to the quadrature of the hyperbola. We shall now show how this can
be determined and carried out.

Bernoulli goes on to give examples of integration by substitution, and applications to
quadratures. Here, in Lecture X, we find the case of the area of the hyperbola between the
curve and an asymptote, as follows;

Let it be required to find the nature of the curve BDC [Fig. 1] of which the
subtangent is always equal to the constant a. According to this assumption,

Leibniz, in his Geometria recondita of 1686 (Selection V.2), had suggested that such
integrals as

J Va
2 — x2 dx, J Va2 + x2 dx should be taken as the representation of certain

transcendental quantities (soon to be called functions). We now express the thought of
Leibniz and Bernoulli by saying that every integral of the form

J R(x, Vax2 + bx + c) dx,
where R is a rational function, can be expressed in terms of algebraic, cyclometric, and
logarithmic functions.
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dy.dx = y.a, hence y dx = a dy and dx = ady.y. If we multiply both sides by
a, we obtain

, aa dy
a dx = •

y

Hence, in order to construct the curve we have to draw the unlimited per-

pendiculars B.J. LH and apply to all A B, AN, AO, etc., which are equal to y,

the corresponding BK, NE, OF, etc., equal to ad\y. Then we obtain the hyper-

bola KEF of which AO, AL, are the asymptotes. Now apply to AG, AH, etc. the
perpendiculars GP, HQ, etc. equal to a; then PQ will be a line parallel to AH.
If, therefore, we take the hyperbolic area KN equal to the rectangle AP and
KO equal to AQ, then the points of intersection D, C, etc. will lie on the required

curve. Hence, when AG, All

,

etc. are arithmetically proportional, then AB,
AN, AO, etc. will be geometrically proportional, because the areas KN, EO,
etc. must be equal. The curve BDG is therefore a logarithmic curve. 6

11 TAYLOR. THE TAYLOR SERIES

The unsatisfactory way in which Newton introduced his fluxions and moments led to

criticism, and to attempts at improvement. Brook Taylor (1685-1731), educated at St.

John’s College, Cambridge, was for a while secretary of the Royal Society, and in his

Methodus incrementorum directa et inversa (London, 1715) attempted a systematic calculus

of finite differences. This “method of increments” has a “direct” and an “inverse” part,

just as the method of fluxions has. The book is mainly known because it contains “Taylor’s
series.” This was the first publication of this theorem, although it was known before; it can
be found in the papers of James Gregory (see Selection V.4). Taylor’s book also opens the
mathematical investigation of the vibrating string (see Selection V.16).

On Taylor see H. Auchter, Brook Taylor, der Mathematiker und Philosoph (Dissertation,

Marburg, Wurzburg, 1937).

6 This is very much like Leibniz’s discussion of 1684, and Bernoulli has corrected himself.
See Selection V.l.
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Here follows the section of the Methodus (pp. 21-23) that contains the Taylor series. We
have changed the notation somewhat to make the paper more legible. 1

Proposition VII. Theorem III. Let z and x be two variable quantities, of which
z increases uniformly with given increments Az. 2 Let nAz — v, v — Az = v,

v — Az = v, etc. Then I say that when z grows into z + v, then x grows into

Ax
l.Az

+ A2z
vv

1.2(Az)
:
+ A3z

vvv

1.2.3(Az) :
+

Demonstration [Fig. 1]

x

x + Ax
x + 2Ax + A2*

Ax
Ax + A2x

Ax + 2Az + A3x

x + 3Az + 3A2z + A3* Az + 3A2x

+ 3A2z + Aix

x + 4Az + 6A2z etc.

+ 4A3z + A4z

A2x

A2x 4- A3x

A2z + 2A3z

+ A4z

etc.

A3z Aix

A3x + A4z etc.

etc.

etc.

The successive values of x, collected by continued addition, are x, x + Ax,

x + 2Ax + A2
x, x + 3Az + 3A2x + A 3

x, etc., as we see from the operation

expressed in the table. But the numerical coefficients of the terms x, Ax, A2
x,

etc. for these values of x are formed in the same way as the coefficients of the

corresponding terms in the binomial expansion [in dignitate binomii]. And if n
is the exponent of the expansion

[
dignitatis index], then the coefficients (accord

-

mg to Newtons theorem) wdl be 1, y,
- —-—

, y
— —

,
etc. When,

therefore, z grows into z + nAz, that is, into z + v, then x will be equal to the

series

n . n n — 1 . „
x + y

Ax + y
—-— A2x +

n n — 1 n — 2

T
~

2 3
A3z + etc.

1 Taylor used a complicated notation with dots and primes
(
lineolae

)

used as superscripts

and subscripts, and the primes in both the accent grave and accent aigu position. We have
kept his notation, except that instead of the increments z, 5, etc. we have written Az, A2

z,

etc., and for the v with subscript accents aigus we have written vl9 vllf . . . . Taylor’s notation
also has its advantage. In his notation x"

, x', x, x, x represent a sequence of functions of
which each is the fluxion of the previous one; whereby Taylor remarks that the lineolae in

x', x" can be regarded as negative dots—an anticipation, if we like, of our modern opera-
tional notation D~ 2

, D~ x
,
D°, D 1

,
D2

, and for the same purpose. Compare Taylor’s notation
to that of Newton, Selection V.7, art. 13, p. 307.

2 Since z flows uniformly, Az is constant, so that A2
z, A3z, etc. are all zero. Here A2z is the

increment of Az, A3z that ofA2
z, etc.
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r **

)

•

DEMONSTRATI O.

X X X X

X+X x+x
• ••

x+x x+x &c.

X+2X+X X+2 X+x X+1X+ X &c.

x+j x+jx+x X+J *+? *+* &C.

X + 4 .X+6 X+4 X+X &c.

&c.

' Valores fuccefiivi ipfius * per additionem continuam colkfli funt

*, x+x, *+ 2*+*, x+?*+j*+*, &c. ut patet per operationem.

in tabula annexa expreflam. Scd in his valoribus x coefficientes

numerales terrainorum x, *, x, 8tc. eodetn modo fbrmantur, ac

coefficientes tenninorutn correfpondentium in dignitate binbmii.

Et (per Theorema Newtoniantm) fi dignitatis index fit n, coeffici-

cientes erunt i
" *

, JL_ x?L=I x see. Er-II XI 2 3

go quo tempore s crefcendo fit x+ «*, hoc eft * + v
t fiet x *qua-

lis feriei x + !L ,+ !Lx * + 2Lx «-»
, -V

I- I 2-! I X -S

(«x
•

Fig. 1
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C *3 )

*•] -7 ‘
Kc- Px

?
inde 9PP tcmp?K * crefcendo gt z+w,

eodem tempore x crefcendo fiet x+ * !L + » _i__ „ j
"

K -
*f? -7351,+

'+ 8tc.
Tt*l

C 0 R O L L. I.

Et ipfisx, x, x, x,8cc. iifdetn manentibus, mutato figuo ipfius v,

quo tempore * decrelcendo fit *— eodem tetnpore x decrefcen-

•t it

VV Vdo fiet x— x —;+ x -
w — x.

• ** - I.M* VI.J.JS1
8tc. vd juxta notatio-

u VV vvv
nem noftram *-*- +*_ - * ta. ipfij

. -i.»* vi.a.jzi
r ’^w

converfisin —v, —v. 8tc.
9 ft

COROLL.Il.
.Si pto Incretnentis eranelcentibus fcribanror ftnriona ipfie yn.

portioaales , fe£Us Jam omnibus v, v, v, u, v, dec.

quo tempore z uniforniter fiuendo fit * + * fiet*, *4- «_*L 4.

4
ii

... - .j-:i v » r
* ~r + *~

t. w **• idmmtpG&o Ipfius v, quo tern-

pore x decrelcendo fit *— *, x decrefteitdo fid x—

»#v

1*.

# r —

x

1.ax*

ob

, / » + *c.
** 2<

3*1

IX
— r

PROP.

Fig. 2
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But

n \ V n- 1 ,
(nAz — Az

)

|

« n-2 /nAz — 2Az\

J Az 2 1

{ 2Az
j

1 2Az 3 1

[ 3Az j/ 3Az

etc. Hence [Fig. 2] in the time that z grows into z + v, x grows into 3

V . „ vv , „ vvv
x = x + Ax

l.Az
+ A2x

1.2(Az) :
+ A3

a:

1.2.3(Az) :
+ etc.

Corollary I. If the Az, Ax, A2
*, A3

a; remain the same, but the sign of v is

changed so that z decreases and becomes z — v, then x decreases at the same

time and becomes

x — Az
l.Az

- A2x
vv

1.2(Az) 2
A3x

vvv

1.2.3(Az) :

— etc.

or

4

x — Ax
v

Ea^ + A2*
vv 1

1.2(Az) 2
A3x

Wigii
1 ,2.3(Az) 3 + etc.

with v, v. etc. converted into — v x ,
— v xl ,

etc.

Corollary II. If we substitute for evanescent increments the fluxions pro-

portional to them, then all v, v, v, v x ,
vxl become equal. When z flows uniformly

into z + v, x becomes 6

V V2 . V3

X + x— + x T-—^ + X + etc.,
1 . z 1 . 2z2

1 . 2 . 3z3

or with v changing its sign, when z decreases to z — v, x becomes

1)2 j;3
. V v‘

X - X— + X—

—

2
1 . z 1 . 2z2

— X
1.2.3z3

+ etc.,

3 This is Newton’s well-known interpolation formula
(
Principia

, Book III. Lemma 5);

see also Newton, Methodic differentialis (London, 171 1); James Gregory tercentenary memorial
volume, ed. H. W. Turnbull (Bell, London, 1939), 119; H. W. Turnbull, The mathematical
discoveries of Newton (Blackie, Glasgow, 1945), 46. The Methodus differentialis was reprinted
in the Opera Newtoni, ed. S. Horsley, I (London, 1779), 519-528, and in D. C. Fraser,

Newton's interpolation formula (Layton, London, 1927). There is a German translation in

A. Kowalewski, Newton, Cotes, Gauss, Jacobi. Vier grundlegende Abhandlungen iiber Interpola-

tion und genaherte Quadratur (Veit, Leipzig, 1917).
4 The On, v x , v, v, v form a sequence of increments, so that v x — Az — v, vxl — Az = v lt

or vx = (»+ l)Az, i>n = (n + 2) Az.

5 This is the classical Taylor series, since in the Leibniz notation x/z = dx/dz, x/(z)2 =
d2x/dz 2

,
etc. Taylor therefore obtained his series from Newton’s interpolation formula by

taking Ax = 0, n = oo. Felix Klein has called Taylor’s step “a transition to the limit of
extraordinary audacity”; see Elementary mathematics from an advanced standpoint, trans.

E. R. Hedrick and C. A. Noble, I (Dover, New York, 1924), 233. Although we shall not
belittle this statement we must also take into account that Taylor’s theorem had been “in
the air” ever since James Gregory had it in a manuscript of 1671 (Gregory tercentenary

memorial volume, pp. 123, 173, 356). See also A. Pringsheim, “Zur Geschichte des Tay-
lorschen Lehrsatzes,” Bibliotheca mathematica (3) 1 (1900), 433-479; G. Enestrom, “Zur
Vorgeschichte der Entdeckung des Taylorschen Lehrsatzes,” ibid., 12 (1911-12), 333-336.
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Here follows one of Taylor’s applications of the theorem.

Proposition VIII. Problem V. Given an equation which contains, apart from
a uniformly increasing 3, a certain number of other variables x. To find the value
of a; from given z by a series of an infinite number of terms.
Find all increments, to infinity, of the proposed equation by means of

Proposition I . IfAnx be the infinite increment of x in the proposed equation, then
by means of these equations will be given all increments Anx and those with
higher n expressed by means of increments of lower n. Let a, c, cu c2 , c3 ,

etc. be
certain arbitrary values corresponding to 2 and x, Ax, A2

x, A3
x, etc.; then by

means of these equations all terms cn ,
cn + 1 ,

and the following can be expressed
in terms of the terms preceding c„. Hence if we write a + v for 2

, then x will be
given by means of

x — c + c 1 I.A2
+ Co

1.2(A2) 2 + C,
vvv

1.2.3(A2) e
+ etc.

(according to Proposition VII). Here the coefficients c, clt c2 , etc. of the terms
whose number is n are given by the same number of conditions imposed on the
problem. 8

12 BERKELEY. THE ANALYST

Among the critics of Newton’s theories (and of those of Leibniz) were Jonathan Swift
(1667-1745) and George Berkeley (1685-1753), both deans in the Church of England in
Ireland. Swift’s attack, directed at much of what the Royal Society was doing (and Newton
was its president from 1703 to his death), can be found in the Laputa section of Gulliver’s
travels (1726); see M. Nicolson and N. M. Mohler, Annals of Science 2 (1937), 405-430.
Berkeley, who became Bishop of Cloyne (County Cork), in 1734, attacked Newton’s fluxions
in its weak spot: the infinitesimals. His lampooning of infinitesimals as “ghosts of departed

e This proposition and several others give information on the number of arbitrary con-
stants in difference and differential equations. Taylor, on page 27 of his book, shows how the
differential equation x — xz — 2x = 0 can be solved by means of x = A + Bz + Cz2

+ Dz3 + Ez4 + • •
• , and by substituting this series as well as x = B + 2Cz + •

•

,

x = 2C + 6Dz H he gets a series of recursion -equations, from which he derives the
solution

x = A + Bz + Az 2 + iBz 3 + lAz 4 + . . .

with two arbitrary constants. These series are what our textbooks often call “Maclaurin”
series (see Selection V.13).

Taylor has no discussion of convergence.
See also R. Reiff, Geschichte der unendlichen Reihen (Laupp, Tubingen 1889) 81 There

exists a facsimile edition of the second edition of Taylor’s book (London, 1717),’ publishedby Fnedlander, Berlin, 1862.
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quantities ” was to show that he who is willing to accept the mysteries of the calculus (which

nevertheless lead to true results) need not hesitate to accept the mysteries of religion. The
foundation of the attack was laid in Berkeley’s Principles of human knowledge (Dublin,

1710), Articles 130-132. The real onslaught came in The analyst of 1734, directed against

“an infidel mathematician,” supposedly Edmund Halley (1656-1742), the Astronomer
Royal. The text is in English, and can be found in editions of Berkeley’s works; see, for

instance, The works of George Berkeley, IV (Nelson, London, 1951), 65-102. The original

title is The analyst, or a discourse addressed to an infidel mathematician (London, 1734).

Berkeley’s full text is easily available; we only select a few pages to give the flavor. See

further F. Cajori, A history of the conceptions of limits and fluxions in Great Britain from
Newton to Woodhouse (Open Court, Chicago, London, 1919), and “Indivisibles and ‘ghosts

of departed quantities’ in the history of mathematics,” Scientia 37 (1925), 303-306; see

also American Mathematical Monthly 24 (1917), 145-154.

3 The Method of Fluxions is the general key by help whereof the modern
mathematicians unlock the secrets of Geometry, and consequently of Nature.

And, as it is that which hath enabled them so remarkably to outgo the ancients

in discovering theorems and solving problems, the exercise and application

thereof is become the main if not sole employment of all those who in this age

pass for profound geometers. But whether this method be clear or obscure, con-

sistent or repugnant, demonstrative or precarious, as I shall inquire with the

1

utmost impartiality, so I submit my inquiry to your own judgment, and that of

every candid reader. Lines are supposed to be generated by the motion of points,

planes by the motion of lines, and solids by the motion of planes. And whereas

quantities generated in equal times are greater or lesser according to the greater

or lesser velocity wherewith they increase and are generated, a method hath been
found to determine quantities from the velocities of their generating motions.

And such velocities are called fluxions: and the quantities generated are called

flowing quantities. These fluxions are said to be nearly as the increments of the

flowing quantities, generated in the least equal particles of time; and to be

accurately in the first proportion of the nascent, or in the last of the evanescent

increments. Sometimes, instead of velocities, the momentaneous increments or

decrements of undetermined flowing quantities are considered, under the

appellation of moments.

4 By moments we are not to understand finite particles. These are said not to

be moments, but quantities generated from moments, which last are only the

nascent principles of finite quantities. It is said that the minutest errors are not

to be neglected in mathematics: 1 that the fluxions are celerities, not propor-

tional to the finite increments, though ever so small; but only to the moments or

nascent increments, whereof the proportion alone, and not the magnitude, is

considered. And of the aforesaid fluxions there be other fluxions, which fluxions

of fluxions are called second fluxions. And the fluxions of these second fluxions

are called third fluxions: and so on, fourth, fifth, sixth, &c. ad infinitum. Now,

1 We recognize the statement made by Newton in his Quadratura curvarum (Selection V.7).

to



BERKELEY. THE ANALYST 12
|

335

as our sense is strained and puzzled with the perception of objects extremely
minute, even so the imagination, which faculty derives from sense, is very much
strained and puzzled to frame clear ideas of the least particles of time, or the
least increments generated therein: and much more so to comprehend the
moments, or those increments of the flowing quantities in statu nascenti, in their

very first origin or beginning to exist, before they become finite particles. And
it seems still more difficult to conceive the abstracted velocities of such nascent
imperfect entities. But the velocities of the velocities, the second, third, fourth,

and fifth velocities, &c., exceed, if I mistake not, all human understanding. The
further the mind analyseth and pursueth these fugitive ideas the more it is lost

and bewildered; the objects, at first fleeting and minute, soon vanishing out of
sight. Certainly in any sense, a second or third fluxion seems an obscure mystery.
The incipient celerity of an incipient celerity, the nascent augment of a nascent
augment, i.e., of a thing which hath no magnitude: take it in what light you
please, the clear conception of it will, if I mistake not, be found impossible;

whether it be so or no I appeal to the trial of every thinking reader. And if a
second fluxion be inconceivable, what are we to think of third, fourth, fifth

fluxions, and so on without end?

5 The foreign mathematicians are supposed by some, even of our own, to

proceed in a manner less accurate, perhaps, and geometrical, yet more intel-

ligible. Instead of flowing quantities and their fluxons, they consider the variable

finite quantities as increasing or diminishing by the continual addition or sub-

duction of infinitely small quantities. Instead of the velocities wherewith incre-

ments are generated, they consider the increments or decrements themselves,

which they call differences, and which are supposed to be infinitely small. The
difference of a line is an infinitely little line; of a plane an infinitely little plane.

They suppose finite quantities to consist of parts infinitely little, and curves to

be polygons, whereof the sides are infinitely little, which by the angles they make
one with another determine the curvity of the line. Now to conceive a quantity
infinitely small, that is, infinitely less than any sensible or imaginable quantity,

or than any the least finite magnitude is, I confess, above my capacity. But to

conceive a part of such infinitely small quantity that shall be still infinitely less

than it, and consequently though multiplied infinitely shall never equal the

minutest finite quantity, is, I suspect, an infinite difficulty to any man whatso-

ever; and will be allowed such by those who candidly say what they think; pro-

vided they really think and reflect, and do not take things upon trust.

6 And yet in the calculus differentialis, which method serves to all the same
intents and ends with that of fluxions, our modern analysts are not content to

consider only the differences of finite quantities: they also consider the dif-

ferences of those differences, and the differences of the differences of the first

differences. And so on ad infinitum. That is, they consider quantities infinitely

less than the least discernible quantity; and others infinitely less than those

infinitely small ones; and still others infinitely less than the preceding infinitesi-

mals, and so on without end or limit. Insomuch that we are to admit an infinite

succession of infinitesimals, each infinitely less than the foregoing, and infinitely

greater than the following. As there are first, second, third, fourth, fifth, &c.

fluxions, so there are differences, first, second, third, fourth, &c., in an infinite
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progression towards nothing, which you still approach and never arrive at. And
(which is most strange) although you should take a million of millions of these
infinitesimals, each whereof is supposed infinitely greater than some other real

magnitude, and add them to the least given quantity, it shall never be the bigger.

For this is one of the modest postulata of our modern mathematicians, and is a
corner-stone or ground-work of their speculations.

9 Having considered the object, I proceed to consider the principles of this

new analysis by momentums, fluxions, or infinitesimals; wherein if it shall

appear that your capital points, upon which the rest are supposed to depend,
include error and false reasoning; it will then follow that you, who are at a loss

to conduct your selves, cannot with any decency set up for guides to other men.
The main point in the method of fluxions is to obtain the fluxion or momentum
of the rectangle or product of two indeterminate quantities. Inasmuch as from
thence are derived rules for obtaining the fluxions of all other products and
powers; be the coefficients or the indexes what they will, integers or fractions,

rational or surd. Now, this fundamental point one would think should be very
clearly made out, considering how much is built upon it, and that its influence
extends throughout the whole analysis. But let the reader judge. This is given
for demonstration. Suppose the product or rectangle AB increased by continual
motion : and that the momentaneous increments of the sides A and B are a and b.

When the sides A and B were deficient, or lesser by one half of their moments,

the rectangle was A - \a x B - \b i.e., AB - \aB - ibA + \-ah. And as
soon as the sides A and B are increased by the other two halves oftheir moments,

the rectangle becomes A + \a x B + \b or AB + \aB + \bA + \ab. From
the latter rectangle subduct the former, and the remaining difference will be
aB + bA. Therefore the increment of the rectangle generated by the intire

increments a and b is aB + bA. Q.E.D. But it is plain that the direct and true
method to obtain the moment or increment of the rectangle AB, is to take the
sides as increased by their whole increments, and so multiply them together,
A + a by B + b, the product whereof AB + aB + bA + ab is the augmented
rectangle; whence, if we subduct AB the remainder aB + bA + ab will be the
true increment of the rectangle, exceeding that which was obtained by the
former illegitimate and indirect method by the quantity ab. And this holds
universally be the quantities a and b what they will, big or little, finite or in-

finitesimal, increments, moments, or velocities. Nor will it avail to say that ab is

a quantity exceeding small: since we are told that in rebus mathemuticis errores

quarn minimi non sunt contemnendi. 2

10 Such reasoning as this for demonstration, nothing but the obscurity of the
subject could have encouraged or induced the great author of the fluxionary
method to put upon his followers, and nothing but an implicit deference to
authority could move them to admit. The case indeed is difficult. There can be
nothing done till you have got rid of the quantity ab. In order to this the notion
of fluxions is shifted: It is placed in various lights: Points which should be clear

2 Newton’s statement again, this time in Latin.
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as first principles are puzzled; and terms which should be steadily used are

ambiguous. But notwithstanding all this address and skill the point of getting

rid of ab cannot be obtained by legitimate reasoning. If a man, by methods not

geometrical or demonstrative, shall have satisfied himself of the usefulness of

certain rules; which he afterwards shall propose to his disciples for undoubted
truths; which he undertakes to demonstrate in a subtile manner, and by the

help of nice and intricate notions; it is not hard to conceive that such his dis-

ciples may, to save themselves the trouble of thinking, be inclined to confound

the usefulness of a rule with the certainty of a truth, and accept the one for the

other; especially if they are men accustomed rather to compute than to think;

earnest rather to go on fast and far, than solicitous to set out warily and see

their way distinctly.

The subject of the next sections can be summed up in the following argument. If

(x + c)
n — xn = nxn

~ 10 -|
^

}

—

-

xn
~ 202 + • • •, and we divide by 0, we can get nxn ~ 1

,

the fluxion of xn
,
only by first supposing that 0 # zero, then 0 = zero. “All which seems a

most inconsistent way of arguing, and such as would not be allowed of in Divinity” (Sec.

14 ). Then follows, somewhat later:

35 I know not whether it be worth while to observe, that possibly some men
may hope to operate by symbols and suppositions, in such sort as to avoid the

use of fluxions, momentums, and infinitesimals, after the following manner.

Suppose x to be an absciss of a curve, and 2 another absciss of the same curve.

Suppose also that the respective areas are xxx and 222: and that 2 — x is the

increment of the absciss, and 222 — xxx the increment of the area, without con-

sidering how great or how small these increments may be. Divide now 222 — xxx

by 2 — x, and the quotient will be 22 + zx 4- xx\ and, supposing that 2 and x are

equal, this same quotient will be 3xx, which in that case is the ordinate, which
therefore may be thus obtained independently of fluxions and infinitesimals.

But herein is a direct fallacy: for, in the first place, it is supposed that the

abscisses 2 and x are unequal, without which supposition no one step could have
been made; and in the second place, it is supposed they are equal; which is a

manifest inconsistency, and amounts to the same thing that hath been before

considered. And there is indeed reason to apprehend that all attempts for setting

the abstruse and fine geometry on a right foundation, and avoiding the doctrine

of velocities, momentums, &c. will be found impracticable, till such time as the

object and end of geometry are better understood than hitherto they seem to

have been. The great author of the method of fluxions felt this difficulty, and
therefore he gave into those nice abstractions and geometrical metaphysics

without which he saw nothing could be done on the received principles; and
what in the way of demonstration he hath done with them the reader will judge.

It must, indeed, be acknowledged that he used fluxions, like the scaffold of a
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building, as things to be laid aside or got rid of as soon as finite lines were found
proportional to them. But then these finite exponents are found by the help of
fluxions. Whatever therefore is got by such exponents and proportions is to be
ascribed to fluxions: which must therefore be previously understood. And what
are these fluxions? The velocities of evanescent increments? And what are these

same evanescent increments? They are neither finite quantities, nor quantities

infinitely small, nor yet nothing. May we not call them the ghosts of departed
quantities? 3

13 MACLAURIN. ON SERIES AND EXTREMES

Berkeley s criticism stung, and during the eighteenth century many attempts were made to
place the calculus on a rigorous foundation. For a report on these attempts, as far as Great
Britain is concerned, see F. Cajori’s works quoted in the introduction to Selection V.12.
One of the most distinguished attempts was made by the Edinburgh professor Colin
Maclaurin (1698-1746) in his Treatise offluxions (Edinburgh, 1742). Maclaurin started, like

Barrow and Newton, from the concepts of space, time, and motion. But Maclaurin’s book
also contains other contributions. Best known is his introduction of Taylor’s series in a way
that has remained familiar in elementary textbooks. He gave the method for deciding
between a maximum and a minimum by investigating the sign of a higher derivative. Here
follow, in the original text, some of the articles of the Treatise that contain these contribu-
tions. Maclaurin also considered questions of convergence in series. See H. W. Turnbull,
Bi-centenary of the death of Colin Maclaurin (University Press, Aberdeen, 1951), also “Cohn
Maclaurin,” American Mathematical Monthly 54 (1947), 318-322, and our Selection III. 10,

note 3.

751. The following theorem is likewise of great use in this doctrine. Suppose
that y is any quantity that can be expressed by a series of this form A + Bz
+ Cz2 + Dz3 + &c. where A, B, C, &c. represent invariable coefficients as
usual, any of which may be supposed to vanish. When z vanishes, let E be the

value of y, and let E, E, E, &c. be then the respective values of y, y, i), &c.

z being supposed to flow uniformly. Then y = E + — A — 1

i Ix2i2+ lx2x3z j

+
i x 9 x ,3 x 4z4 + <^c ' ^’e ^aw the continuation of which series is mani-

fest. For since y = A + Bz + Cz2 + Dz3 + &c. it follows that when z = o,

3 We may think here of the many arguments involved in the Zeno paradoxes, which also
played a role in the eighteenth-century discussions concerning the foundations of the
calculus; see Cajori, History of the conceptions of limits and fluxions, quoted in the introduc-
tion to this selection, and his nine articles, “History of Zeno’s arguments on motion,”
American Mathematical Monthly 22 (1915).
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A is equal to y\ but (by the supposition) E is then equal to y; consequently

A = E. By taking the fluxions, and dividing by z, % = B + 2Cz + 3Dz2 + &c.
z

y m ]jj

and when z = o, B is equal to > that is to -r . By taking the fluxions again, and

V
dividing by z, (which is supposed invariable) -^ = 2C + 6Dz + &c. Let z = o,

„ E E
and substituting E for y,—

2 = 2C, or C = — • By taking the fluxions again, and
z Zz

dividing by z,
Jg

= 6D + &c. and by supposing z = o, we have D = ^ • Thus

it appears that y = A + Bz + Cz2
4- Dz3 + &c. = E H—— + —

Z XX £Z

Ez3 Ez4

+
l x
~
2 x 3i~3

+
l x 2 x 3 x 4i4

+ ThlS ProPosltlon may be llkewise

deduced from the binomial theorem. Let BD [Fig. 1], the ordinate of the figure

E

EDM at B, be equal to E, BP = z, PM = y, and this series will serve for

resolving the value of PM, or y, (some particular cases being excepted, as when
E E

any of the coefficients E,-jr<^ &c. become infinite) into a series, not only in such

cases as were described in the preceding articles, but likewise when the relation

of y and z is determined by an affected equation, and in many cases when their

relation is determined by a fluxional equation. This theorem was given by Dr.

Taylor, method, increm. By supposing the fluxion of z to be represented by BP,

E E E
or z = z, we have y = E + E + — + — + — + &c. (as was observed in Art.

Z O Zt

255) 1 and hence it appears at what rate the fluxion of y of each order contributes

e
to produce the increment or decrement of y, since y — E = E + -^ + — + —

+ &c. If Bp be taken on the other side of B equal to BP, then pm = A — Bz

+ Cz2 — Dz3 + &c. = (the same quantities being represented by —
, ts ,

&c., as
z z

2

1 Maclaurin’s book is divided into two parts. Book I is geometrical, Book II is computa-
tional. Our selection is from Book II. Articles 255 and 261 (to which he refers below) deal

with the same matter in a geometrical way.



340
|

V NEWTON, LEIBNIZ, AND THEIR SCHOOL

before, or the base being supposed to flow the same way,) E — — -\ —
z 1 x 2s2

Ez3 Ez4

~
l'x 2 x 3z3 + Fx 2 x 3 x 4z 4

~ &C ' cf’nseqiicntly PM + pm = 2E +

2Ez2 2Ez*

1 x 2?2 ^ 1 x 2 x 3 x 4z4
+ &c. . .

.

Then, in Arts. 858-861, Maclaurin gives his criterion for maxima and minima.

858. When the first fluxion of the ordinate vanishes, if at the same time its

second fluxion is positive, the ordinate is then a minimum, but is a maximum if

its second fluxion is then negative; that is, it is less in the former, and greater in

the latter case than the ordinates from the adjoining parts of that branch of the
curve on either side. This follows from what was shewn at great length in

Chap. 9. B. I, or may appear thus. Let the ordinate AF = E, AP = x [Fig. 2],

&c. Therefore if the

and the base being supposed to flow uniformly, the ordinate PM = (Art. 751)

, 7 Ex Ex2 Ex3

& + -j- + 2^2 + g^3
+ ®c - Let Ap be taken on the other side of A equal to

A P, then the ordinatepm = E - ^ ~ - |F +&C . Suppose now E = o,

Hr2 Jy^/v.2

then PM = E *-\—^ &c. and^m — E*-\
x 2x2 r

2x2

distances AP and Ap be small enough, PM and pm will both exceed the ordinase
AF when E is positive; but will be both less than AF ifE be negative. But if E
vanish as well as E, and E does not vanish, one of the adjoining ordinates PM
or pm shall be greater than AF, and the other less than it; so that in this case
the ordinate is neither a maximum nor minimum. We always suppose the
expression of the ordinate to be positive.

859. In general, if the first fluxion of the ordinate, with its fluxions of several
subsequent orders, vanish, the ordinate is a minimum or maximum, when the
number of all those fluxions that vanish is 1, 3, 5, or any odd number. The
ordinate is a minimum, when the fluxion next to those that vanish is positive;
but a maximum when this fluxion is negative. This appears from Art. 261, or by
comparing the values of PM and pm in the last article. But if the number of all

the fluxions of the ordinate of the first and subsequent successive orders that
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vanish be an even number, the ordinate is then neither a maximum nor minimum.
860. When the fluxion of the ordinate y is supposed equal to nothing, and an

equation is thence derived for determining x, if the roots of this equation are all

unequal, each gives a value of x that may correspond to a greatest or least

ordinate. But if two, or any even number of these roots be equal, the ordinate

that corresponds to them is neither a maximum nor minimum. If an odd num-
ber of these roots be equal, there is one maximum or minimum that corresponds

to these roots, and one only. Thus if
|
= x4 + ax3 + bx2 + cx + d, then sup-

posing all the roots of the equation z4 + ax3 + bx2 + cx + d = 0 to be real, if

the four roots are equal there is no ordinate that is a maximum or minimum', if

two or three of the roots only are equal, there are two ordinates that are

maxima or minima-, and if all the roots are unequal there are four such ordinates.

861. To give a few examples of the most simple cases. Let y — a2x — x3
,
then

y = a2x - 3x2x and y = — Qxx2
. Suppose y

—
0, and 3x2 = a2 or x = ~^= ,

in which
vr

case y =
— 6ax2

y = 7=— . Therefore y being negative, y is a maximum when x = ——

,

V3 v 3

2a3
and its greatest value is . If y = aa + 2bx - xx, then y = 2bx - 2xx, and

y = —2x2
;
consequently y is a maximum when 2b — 2x = 0, or x = b. If

y = aa — 2bx + xx then y = —2bx + 2xx, and y = 2x2
;
consequently y is

now a minimum when x = b, if a be greater than b.

Maclaurin also considers the cases in which y,y, y, . .

.

vanish.

14 D’ALEMBERT. ON LIMITS

Among the mathematicians who seriously tried to come to an understanding of the founda-

tions of the calculus (the “metaphysics of the calculus”) was Jean LeRond D’Alembert

(1717-1783), long the secretaire perpetuel of the French Academy and with Denis Diderot

the leading spirit of the famous Encyclopedic ou dictionnaire raisonne des sciences, des arts

et des metiers (28 vols.; Paris, 1751-1772). In this Encyclopedic D’Alembert wrote a number
of articles, 1 and in the article entitled “ Differentiel ” (vol. 4, 1754) he came to the expression

of the derivative as the limit of a quotient of increments, that is, of what we now write

dy\dx = lim Ay/Ax, Ax —> 0 (already, though not in a very clear way, expressed by Newton).
This leading idea, however, was not followed up immediately, either by D’Alembert himself

or by others. One of the difficulties that prevented acceptance of the limit concept in this

case was of the same nature as the Zeno paradoxes: how can a limit be reached if the process

of coming to it consists of an infinite number of steps? Only with Cauchy in the early

1 For an account of several of them see G. Loria in the Actes . . . du 3e congrks international
d’histoire des sciences, tenu au Portugal en 1934 (Lisbon, 1935), 15 pp.
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twenties of the nineteenth century was this difficulty overcome, so that we can ascribe the
acceptance of the definition (and the way of writing, too)

? = lim^
ax Ax

lim
f(x + h) - f(x)

h
Ax = h —

>

0

to the work of Cauchy: Gours d’analyse (Paris, 1821).

DIFFERENTIALS

. . .What concerns us most here is the metaphysics of the differential calculus.

This metaphysics, of which so much has been written, is even more important
and perhaps more difficult to explain than the rules of this calculus themselves:

various mathematicians, among them Rolle, 2 who were unable to accept the
assumption concerning infinitely small quantities, have rejected it entirely, and
have held that the principle was false and capable of leading to error. Yet in

view of the fact that all results obtained by means of ordinary Geometry can be
established similarly and much more easily by means of the differential calculus,

one cannot help concluding that, since this calculus yields reliable, simple, and
exact methods, the principles on which it depends must also be simple and
certain.

Leibniz was embarrassed by the objections he felt to exist against i nfinitely

small quantities, as they appear in the differential calculus; thus he preferred to

reduce infinitely small to merely incomparable quantities. This, however, would
ruin the geometric exactness of the calculations; is it possible, said Fontenelle, 3

that the authority of the inventor would outweight the invention itself? Others,

like Nieuwentijt, 4 admitted only differentials of the first order and rejected all

others of higher order. This is impossible; indeed, considering an infinitely small

chord of first order in a circle, the corresponding abcissa or versed sine is in-

finitely small 5 of second order; and if the chord is of the second order, the
abscissa mentioned will be of the fourth order, etc. This is proved easily by
elementary geometry, since the diameter of a circle (taken as a finite quantity)

is always to the chord as the chord to the corresponding abscissa. 6 Thus, if one
admits the infinitely small of the first order, one must admit all the others,

though in the end one can rather easily dispense with all this metaphysics of the

infinite in the differential calculus, as we shall see below.

2 Michel Rolle (1652-1719), member of the French Academy, is best known for the
theorem in the theory of equations called after him. In 1700 he took part in a debate in the
French Academy on the principles of the calculus; see C. Boyer, The history of the calculus
(Dover, New York, 1949), 241. See also Selection 11.13, note 5.

3 Bernard le Bovier de Fontenelle (1657-1757) was a predecessor of D’Alembert as
secretaire perpetuel of the Academy. See Boyer, History

,
241-242.

4 Bernard Nieuwentijt (1654—1718), a physician-burgomaster of Purmerend, near
Amsterdam, opposed Leibniz’s concept of the calculus; see Selection V.l.

5 Versed sin a = 1 — cos a = a2/2! — a4 /4! + • •
• (D’Alembert still takes the dimension

to be that of a chord, hence his vers a is really our R vers a).
6 2R :2R sin a/2 = 2R sin a/2 : i?(l — cos a).
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Newton started out from another principle; and one can say that the meta-
physics of this great mathematician on the calculus of fluxions is very exact and
illuminating, even though he allowed us only an imperfect glimpse of his
thoughts.

He never considered the differential calculus as the study of infinitely small
quantities, but as the method of first and ultimate ratios, that is to say, the
method of finding the limits of ratios. Thus this famous author has never dif-

ferentiated quantities but only equations; in fact, every equation involves a
relation between two variables and the differentiation of equations consists
merely in finding the limit of the ratio of the finite differences of the two quan-
tities contained in the equation. Let us illustrate this by an example which will
yield the clearest idea as well as the most exact description of the method of the
differential calculus.

Let AM [Fig. 1] be an ordinary parabola, the equation of which is yy = ax;
here we assume that AP = x and PM = y, and a is a parameter. Let us draw

m

the tangent MQ to this parabola at the point M. Let us suppose that the prob-
lem is solved and let us take an ordinate pm at any finite distance from PM;
furthermore, let us draw the line mMR through the points M, m. It is evident'
first, that the ratio 7 M P

/
PQ of the ordinate to the subtangent is greater than

the ratio MPjPR or mO/MO which is equal to it because of the similarity of the
triangles MOm, MPR; second, that the closer the point m is to the point M,
the closer will be the point R to the point Q, consequently the closer will be the
ratio MP/PR or mO/MO to the ratio MP/PQ; finally, that the first of these
ratios approaches the second one as closely as we please, since PR may differ as
little as we please from PQ. Therefore, the ratio MPjPQ is the limit of the
ratio of mO to OM. Thus, if we are able to represent the ratio mO/OM in
algebraic form, then we shall have the algebraic expression of the ratio ofMP
to PQ and consequently the algebraic representation of the ratio of the ordinate
to the subtangent, which will enable us to find this subtangent. Let now
MO = u,Om = z; we shall have ax = yy, and ax + au = yy + 2yz + zz. Then
in view of ax = yy it follows that au = 2yx + zz and z\u = aj(2y + z).

This value a/(2y + z) is, therefore, in general the ratio ofmO to OM, wherever
one may choose the point m. This ratio is always smaller than a/2y; but the
smaller z is, the greater the ratio will be and, since one may choose z as small as

7 D’Alembert writes ———
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one pleases, the ratio a/(2y + z) can be brought as close to the ratio a/2y as we
like. Consequently a\2y is the limit of the ratio aj(2y + z), that is to say, of the

ratio mO/OM. Hence a/2y is equal to the ratio MP/PQ, which we have found to

be also the limit of the ratio of mO to Om, since two quantities that are the
limits of the same quantity are necessarily equal to each other. To prove this,

let X and Z be the limits of the same quantity Y

.

Then I say that X = Z;

indeed, if they were to have the difference F, let X = Z ± V: by hypothesis

the quantity Y may approach X as closely as one may wish; that is to say, the

difference between Y and X may be as small as one may wish. But, since Z
differs from X by the quantity V, it follows that Y cannot approach Z closer

than the quantity V and consequently Z would not be the limit of Y, which is

contrary to the hypothesis.

From this it follows that MP/PQ is equal to a/2y. Hence PQ = 2yy/a = 2x.

Now, according to the method of the differential calculus, the ratio of M

P

to

PQ is equal to that of dy to dx; and the equation ax = yy yields a dx = 2y dy
and dy/dx = a/2y. So dy/dx is the limit of the ratio of z to u, and this limit is

found by making z = 0 in the fraction a/(2y + z).

But, one may say, is it not necessary also to make z = 0 and u = 0 in the

fraction z/u = a/(2y + z), which would yield § = a\2y\ What does this mean?
My answer is as follows. First, there is no absurdity involved; indeed § may be
equal to any quantity one may wish: thus it may be = a/2y. Secondly, although
the limit of the ratio of z to u has been found when z = 0 and u = 0, this limit

is in fact not the ratio of z = 0 to u = 0, because the latter one is not clearly

defined; one does not know what is the ratio of two quantities that are both
zero. This limit is the quantity to which the ratio z/u approaches more and more
closely if we suppose z and u to be real and decreasing. Nothing is clearer than
this; one may apply this idea to an infinity of other cases. 8

Following the method of differentiation (which opens the treatise on the

quadrature of curves by the great mathematician Newton 9
), instead of the

equation ax + au = yy + 2yz + zz we might write ax + aO = yy + 2y0 + 00,

thus, so to speak, considering z and u equal to zero; this would have yielded

o = a/2y. What we have said above indicates both the advantage and the

inconveniences of this notation: the advantage is that z, being equal to 0, dis-

appears without any other assumption from the ratio a/(2y + 0); the incon-

venience is that the two terms of the ratio are supposed to be equal to zero,

which at first glance does not present a very clear idea.

From all that has been said we see that the method of the differential calculus

offers us exactly the same ratio that has been given by the preceding calculation.

It will be the same with other more complicated examples. This should be
sufficient to give beginners an understanding of the true metaphysics of the

differential calculus. Once this is well understood, one will feel that the assump-
tion made concerning infinitely small quantities serves only to abbreviate and
simplify the reasoning; but that the differential calculus does not necessarily

8 Here D’Alembert refers to his articles on “Limit” and “Exhaustion” in the same
Encyclopedie.

9 See our Selection V.7.
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suppose the existence of those quantities; and that moreover this calculus

merely consists in algebraically determining the limit of a ratio, for which we
already have the expression in terms of lines

,
and in equating those two expressions.

This will provide us with one of the lines we are looking for. This is perhaps the
most precise and neatest possible definition of the differential calculus; but it

can be understood only when one is well acquainted with this calculus, because
often the true nature of a science can be understood only by those who have
studied this science.

In the preceding example the known geometric limit of the ratio of 2 to u is

the ratio of the ordinate to the subtangent; in the differential calculus we look
for the algebraic limit of the ratio 2 to u and we find aj2y. Then, calling s the
subtangent, one has yja = a/2y; hence * = 2yy/a = 2x. This example is suf-

ficient to understand the others. It will, therefore, be sufficient to make oneself

familiar with the previous example concerning the tangents of the parabola,
and, since the whole differential calculus can be reduced to the problem of the
tangents, it follows that one could always apply the preceding principles to
various problems of this calculus, for instance to find maxima and minima,
points of inflection, cusps, etc. ... 10

What does it mean, in fact, to find a maximum or a minimum ? It consists, it

is said, in setting the difference 11 dy equal to zero or to infinity; but it is more
precise to say that it means to look for the quantity dyjdx which expresses the
limit of the ratio of finite dy to finite dx, and to make this quantity zero or
infinite. In this way all the mystery is explained; it is not dy that one makes =
to infinity: that would be absurd, since dy is taken as infinitely small and hence
cannot be infinite; it is dyjdx

:

that is to say, one looks for the value of x that
renders the limit of the ratio of finite dy to finite dx infinite.

We have seen above that in the differential calculus there are really no in-

finitely small quantities of the first order; that actually those quantities called

u are supposed to be divided by other supposedly infinitely small quantities; in
this state they do not denote either infinitely small quantities or quotients of
infinitely small quantities; they are the limits of the ratio oftwo finite quantities.
The same holds for the second-order differences and for those of higher order.
There is actually no quantity in Geometry such as d dy, whenever d dy occurs
in an equation it is supposed to be divided by a quantity dx2

,
or another of the

same order. What now is d dyjdx2
? It is the limit of the ratio d dyjdx divided

by dx, or, what is still clearer, it is the limit of dz/dx, where dyjdx = 2 is a finite

quantity.

15 EULER. TRIGONOMETRY

Euler’s Introductio in analysin infinitorum (2 vols., Lausanne, 1748; Opera omnia, ser. I,

vols. 8, 9), written in 1745, is one of his great textbooks, from which whole generations have
learned their analysis, especially their knowledge of infinite series and functions defined with

10 Here D’Alembert refers to his articles on these subjects.
D Alembert makes little distinction between difference and differentiel

.
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their aid. The first volume begins with numerical and power series, recurrent series and con-

tinued fractions. The Taylor series comes into its own. Logarithmic and exponential func-

tions, both defined by means of power series, are seen at last in their inverse character:

if y = ex
,
x = log

e y. Both series are obtained by limiting operations from the binomial
series. Then follows trigonometry, which is the subject of our selection. The book also

contains much number theory; and the second volume contains an analytic geometry of the
plane and of space, with discussion of algebraic and transcendental curves as well as

quadric surfaces. The method of exposition, however, is still quite different from that
presented in our present texts as analytic geometry.

The Introductio created order in the still somewhat uncertain field of mathematical
notation; Euler’s notation (with few exceptions) is our notation. The symbols sin, cos, e, 77,

although occasionally used before, from now on received general acceptance. The book,
however, does not deal with differential and integral calculus, to which subjects Euler later

devoted his Institutions calculi differentials (Saint Petersburg, 1755) and Institutiones

calculi integrals (3 vols.; Saint Petersburg, 1768-1770); Opera omnia, ser. I. vols. 10-13.

The spirit of the book may somewhat be gathered from chapter 8 of the first volume
(Opera omnia, ser. I, vol. 8), in which Euler introduces the trigonometric functions, now for

the first time regarded systematically as ratios, hence as dimensionless quantities. In the
two preceding chapters he had introduced exponentials and logarithms, with examples on
population increase and investment, and with such series as those for log (1 + x) and ax .

The symbol c, already used by Euler in 1727, 1
is used for the sum of the series

1
1 1

+
1
+

1.2
+

1

17273
+ etc.

This sum is given to 23 decimals. With the series

_ 1
z z2 z3

+
T
+

172
+

1.2.3
+ etc.,

in which z may be real, imaginary, or complex, chapter 7 comes to an end. Here follows

chapter 8.

ON TRANSCENDENTAL QUANTITIES WHICH CAN BE OBTAINED FROM
THE CIRCLE

126. After logarithms and exponential quantities we shall investigate circular

arcs and their sines and cosines, not only because they constitute another type
of transcendental quantities, but also because they can be obtained from these

very logarithms and exponentials when imaginary quantities are involved.

1 Euler, Meditatio in experimenta explosione tormentorum nuper instituta, written in 1727
but first published in 1864. The symbol e appeared in print for the first time in Euler’s text-
book, Mechanica, sive motus sciential analytics exposita (Saint Petersburg, 1736), Opera omnia,
ser. II, vol. 1.
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Let us therefore take the radius of the circle, or its sinus totus, = 1 . Then it

is obvious that the circumference of this circle cannot be exactly expressed in

rational numbers; but it has been found that the semicircumference is by
approximation

= 3.14159.26535.89793. .

.

[127 decimal places are given 2
]
for which number I would write for short

n,

so that 7t is the semicircumference of the circle of which the radius = 1, or it is

the length of the arc of 180 degrees. 3

127. If we denote by 0 an arbitrary arc of this circle, of which I always assume
the radius = 1, then we usually consider of this arc mainly the sine [sinus] and
cosine [cosinus]. I shall denote the sine of the arc z in the future in this way

sin. A.z, or only sin. z

and the cosine accordingly

cos. A.z, or only cos. z.

Hence we shall have, since n is the arc of 180°,

sin. 0 = 0, cos. 0 = 1

and

sin. = 1, cos. \rr = 0 • •

Now follows a whole set of trigonometric formulas including the definitions tang.z =
Sm ’

~, cot. z =
C°^' Z

,
the addition formulas, and identities such as

cos. z sm. z

tang
a + b _ sin. a + sin. b

2 cos. a + cos. b

2 Euler took this value from T. G. de Lagny, “Memoire sur la quadrature du eercle,”

Histoire de VAcademie Royale, Paris, 1719 (1727), l
e partie, 176—189, who computed it to

127 decimal places by means of a series for tan -1 30°.
3 The symbol v was never used in Antiquity; it seems first to have been used by William

Jones (the editor of Newton’s Analysis per aequationes, London, 1711) in his Synopsis pal-

mariorum matheseos (London, 1706), p. 243. See D. E. Smith, History of mathematics (Ginn,

New York, 1925), II, 312. Euler used it in his Mechanica (1736); see note 1. See E. W.
Hobson, Squaring the circle (Cambridge University Press, Cambridge, England, 1913).

Euler, using the term sinus totus for the radius of the circle, adheres for the last time to the
old terminology, in which the sine is a segment. See Selection IV. 13, note 9.
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Hereafter we omit the period after sin and cos and write i for V — 1 , as Euler also did in later

work. 4

132. Since

(sinz) 2 + (cosz)2 = 1,

we shall have by factorization

(cos z + * sin z)(cos z — i sin z) = 1,

which factors, although imaginary [etsi imaginarii], still are of great use in

combining and multiplying sines and cosines.

Now comes De Moivre’s theorem 5 (though the name is not mentioned), from which
follows, in §133:

cos nz _ (cos z + i sin z)
n + (cos z — i sin z)

n

and

sin nz = (cos z + i sin z)
n — (cos z — i sin z)

n

2i

When we develop these binomials in a series we shall get

COS nz = (cos z)
n -

0
^

(cos z)’*-
2(sinz

)

2 + etc.

and

n
/ \n_l • n

(
n ~ 1)(W — 2) . , „

sin nz = - (cos z)
n 1 sin z 1 ^ (cos z)"- 3 (sin) 2 + etc.

134. Let the arc z be infinitely small; then we get sin z = z and cos z = 1;

let now n be an infinitely large number, while the arc nz is of finite magnitude.

4 “In the following I shall denote the expression by the letter i so that n = — 1

Euler, De jormulis differentialibus angularibus, presented to the Saint Petersburg Academy,
1777; published in the posthumous vol. IV of the Institutiones calculi integralis (1794),
183-194; Opera omnia

, ser. I, vol. 19, 129-140, p. 130.
6 This theorem, now usually written (cos + i sin <p)

n = cos ncp + i sin ntp, appears at the
opening of A. de Moivre, Miscellanea analytica (London, 1730), but in a different, more
geometrical, form.
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Take nz = v\ then since sin z = z = vjn we shall have

cos v = 1
V2 V4

TT2T3
+

1.2, 3.

4

+ etc ’

and

sin v = v
v3 v5

1X3 +
1.2. 3. 4. 5

+ 6tC ‘

Then, by writing v = —~ Euler obtains a series for sin — 90° with terms up to Xr, andn £ n n29

a series for cos — 90° with terms up to the coefficients given to 28 decimals; these are

followed by series for the tangent and the cotangent. He shows that it is only necessary to

know the numerical values of these quantities for the values from 0° to 30° to be able to

find them all by identities such as sin (30 + z) = cos 2 - sin (30 - z). Here cosec. z and
sec. z are introduced.

138. Let us now take in the formulas of §133 the arc z infinitely small and let

n be an infinitely small number e [Euler writes *] such that ez will take the finite

value v. We thus have ez = v and z = v/e, hence sin z = vje and cos z = 1.

After substituting these values we find

cos v =
(i + f + (. -f

sin v =

( i
viV I

i vi\ c

1 H 1

\ «/ \ «/

2i

In the previous chapter we have seen that

(‘ + ;)' -

where by e we denote the base of the hyperbolic logarithms; if we therefore

write for z first iv, then — iv, we shall have

cos v =
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and

eiv - e~ iv

sin v = —
2i

From these formulas we can see how the imaginary exponential quantities can
be reduced to the sine and cosine of real arcs. Indeed, we have

e
tv = cos v + i sin v,

e~ iv = cos v — i sin v.

Then follow in §139 some formulas for the logarithms leading up to

1 ,
cos a + i sin 2

2 = w-. I ——

.

2i cos z — 1 sin 2

where l indicates logarithm.

140. Since = tang z, the arc 2 can be expressed by its tangent in such

a way that we have

1 ^
1 + i tang 2

2i 1 — 4 tang 2

Now we have seen above (§123) that

.1+2 2x 2x3 2x5
2a;

7

1—x = T + ^- + X + T- + etc '

We now put x = i tang 2 and shall obtain

. _ tang z (tang z)
3

,

(tang zf
,

(tang z)
7

,* “~
I

+ 5 + 7 + etc ‘

If we therefore put tang 2 = t, so that 2 is the arc of which the tangent is t,

which we shall indicate by A

.

tang, t [our tan

“

1
<], we shall have

z = A. tang. t.

Therefore, for known t, the corresponding arc will be

t t
3

t
5 f t

9

Z ~l~3 + 5~7 + 9~ et°-
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Therefore, if the tangent t is equal to the radius 1, the arc 2 = 45° or z = tt/4,

and we shall have

1
- + etc.,

which is the series first found by Leibniz to express the value of the circum-
ference of the circle. 6

The chapter ends with some other series for ~ that converge more rapidly.

16 D’ALEMBERT, EULER, DANIEL BERNOULLI. THE VIBRATING
STRING AND ITS PARTIAL DIFFERENTIAL EQUATION

Among the problems that Brook Taylor discusses in the second part of his MethocLus incre-

mentorum (London, 1715; see Selection V.ll) there are two (Nos. 17 and 18) that deal with
the vibrating string. They had already been discussed in Taylor’s paper “De motu nervi
tensi ” (On the motion of a tense string, or taut sinew), Philosophical Transactions 28 (1713),
26-32 (published in 1714; translated in the abridged edition, vol. 6, pp. 14-17). The first

problem is “To determine the motion of a tense string”; the second is “Given the length
and weight of the string, as well as the stretching weight, to find the time of vibration.”
Taylor concludes that at any point of the arc the normal acceleration is proportional to the
curvature. This means that for small vibrations Taylor has in principle the equation which
we write

c
&2y
8t2

a being the mass per unit length and T the tension of the string, but there is no evidence
that he had any notion of partial derivatives. But he did find that the motion ofan arbitrary
point is that of a simple pendulum, and thus found its time of vibration. He took the form
of the curve to be sinusoidal.

In 1727 Johann Bernoulli suggested to his son Daniel that he take up Taylor’s problem
again. Of a musical string, of given length and weight, stretched by a given weight, to
find its vibrations ” (Opera omnia, III, p. 125). But Johann could not wait and published
his own “Meditations on vibrating strings with little weights at equal distances” in the
Commentarii Academiae Scientiarum Petropolitanae J (1728, Opera omnia, III, 198-210),
where he set up difference equations by studying the forces working on each of n little

weights along a string, and then, passing to the limit of a continuous string, concluded that

6 Leibniz published this series in “De vera proportione circuli,” Acta erucUtorium 1 (1682),
41 (Mathematische Schriften, Abth 2, vol. 1, p. 118). He had already mentioned it in letters of
1673. Before him the series appears in the writings of James Gregory (letter to Collins, 1671;
see Selection V.4), and before this in a Sanskrit text of c. 1500 by Nilakantha; see C. T.
Rajagopal and T. V. Vedamurthi Aiyar, Scripta Mathcmatica 17, 1951, 65-74; J. E. Hof-
mann, Math. phys. Semesterberichte 3 (1953), 194-206.
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the form of the string must be the trochoides soda, the “companion of the cycloid,” a name
used since Roberval for the sine curve. He obtained Taylor’s time of vibration.
With D’Alembert’s paper, “Recherches sur la courbe que forme une corde tendue mise en

vibration,” Histoire de VAcademie Royale, Berlin, 3, 1747 (1749), 214-219, followed by
Suite des recherches, ibid., 220-249, begins the search for the general shape of the vibrat-

ing string, a search based on the solution of the partial differential equation indicated (in his
special notation) by Taylor. This paper opened a series of contributions on the subject by
D’Alembert, Euler, and Daniel Bernoulli, in which the authors came to different conclusions
on the nature of an arbitrary’ function and its expansion in trigonometric functions, a
controversy brought to a conclusion only in the nineteenth century by Fourier, Cauchy,
Dirichlet, and Riemann.

The papers, of which excerpts follow, are: (1) D’Alembert (1747), already mentioned;
(2) Euler, “Sur la vibration des cordes,” Histoire de VAcademie Royale, Berlin, 4, 1748
(1750), 69-85 (French), Opera omnia, ser. II, vol. 10, 63-77; (3) D’Alembert, “Addition au
memoire sur la courbe que forme une corde tendue, mise en vibration,” Histoire de VAcademie
Royale, Berlin, 6, 1750 (1752), 355-360; (4) D. Bernoulli, “Reflexions et eclaircissemens sur
les nouvelles vibrations des cordes exposees dans les memoires de l’Academie de 1747 et
1748, ibid., 9, 1753 (1755), 147-172; (5) Euler, “ Remarques sur les memoires precedents
de M. Bernoulli,” ibid., 196-222, Opera omnia, ser. II, vol. 10, 232-254.
For further information we refer to the exemplary exposition by C. Truesdell in the intro-

duction to Euler’s Opera omnia, ser. II, vol. 11, part 2: “The rational mechanics of flexible or
elastic bodies, 1638-1788 ” (1960), 435 pp. An older exposition is to be found in H. Burkhart,
“ Entwicklungen nach oscillierenden Funktionen und Integration der Differentialgleichun-
gen der mathematischen Physik, Jahresberichte der deutschen mathematischen Vereiniqunq
10 (1908), xii-f 894 pp.

(1) D’ALEMBERT (1747)

I. I propose to show in this paper that there exist an infinity of curves different
from the elongated cycloid 1 which satisfy the problem under consideration. I

shall always suppose that

1 The excursions or vibrations of the string are very small so that the arcs
AM [Fig. 1] of the curve that is formed can always be taken as reasonably equal
to the corresponding abscissa AP\

M

Fig. l

2° The string is of uniform thickness in its whole length;
3° That the force F of the tension is to the weight of the string in constant

ratio, that is, asm:!, from which it follows that when p is gravity, and l the
length of the curve, we can suppose F = pml;

4° That if HP or AM is called s and PM y, and if ds is taken constant, then
the accelerating force at the point M along MP is - F(d dy/ds2

)
if the curve is

1 This is the “compagne de la cyeloide” of Roberval, hence the sine curve.
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concave toward AC, or F(d dy/ds2
)
if it is convex. See Taylor, Meth. incremen-

torum. 2

II. This being so, let us imagine that Mm, mn [Fig. 2] are two consecutive

sides of the curve at an arbitrary instant, and that Pp = p-n, that is, let ds be

constant. Let t be the time elapsed from the moment when the string started to

vibrate : it is certain that the ordinate PM can only be expressed by a function

of the time t and of the abscissa or the corresponding arc s or A P. 3 Let, there-

fore, PM = <p(t, s), that is, let it be equal to an unknown function of t and s.

We shall write d[<p(t, s)\ = p dt + q ds, p and q being equally functions of t and s.

Now it is evident from the theorem of Mr. Euler [Mem. de Petersbourg 7, p. 177)

that the coefficient of ds in the differential ofp must be equal to the coefficient

of dt in the differential of q.
4

If, therefore, dp = a dt + v ds, then dq =
v dt + 1

3 ds, a, v, /3 being again unknown functions of t and ,s.

Fig. 2

III. It follows from this that, since the sides Mm, mn belong to the same
curve, pm. — PM will be equal to the differential of <p(t, s) when only s varies,

hence that pm — PM = q ds = ds .q and that the quantity which above we
have indicated by d dy, that is, the second differential of PM taken varying

only s, will be ds
. ft ds. Hence F(d dy/ds2

)
= F/3.

2 This formula is now usually written as force = T(d2yldx2 ).

3 D’Alembert uses the term “function” in the way we are accustomed to use it. By 1747
this was not unusual. See our “Note on the emergence of the concept of function,” below.

4 This is the theorem that, when F = F(x, y), d2F\dx dy = d2F\dy dx. Euler published
it in “De infinitis curvis eiusdem generis,” Commentarii Academiae Scientiarum Petro-
politanae 7, 1734-35 (1740), 184-200 (Opera omnia , ser. I, vol. 22, 57-75). He demonstrated
it as follows:

“Let A be a function
[functio ] of these t and u

,
let A pass into B when instead of t we put

t + dt, and let A pass into C if u A du is substituted for u. And let A pass into D when at
the same time t A dt is substituted for t and u -f- du for u. From this it is clear that if in B
we write u A du instead of u we get D, and in the same way we also get D when in G we
write t A dt instead of t. This being so, let A be differentiated with t constant, and we obtain
C — A, since when A passes into C when u + du is substituted for u, its differential is G — A.
If now in G — A we substitute t A dt for t we obtain D — B, so that the differential will be

D — B — G A A.

“Now let us change the order, and by substituting t A dt for t change A into B. Then the
differential of A with only t as variable will be B — A. If now we substitute u + du for u
this differential passes into D — G, so that its differential will be

D — B — G — A,

which agrees with the differential obtained by the previous operation.” Hence, in our
notation, d2A/du dt = d2A/dt du. Euler repeats the theorem and proof in his Institutiones

calculi differentialis (Saint Petersburg, 1755), Opera omnia, ser. I, vol. 10, 153-157.
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IV. Let us now imagine that the points M, m, n [Fig. 3] move to M', m! ,
n'.

Then it is certain that the excess of PM' over PM will be equal to the differen-

tial of <p{t, s) taken when only t varies, that is, that PM' - PM = p dt = dt.p,

and that the second differential of PM taken when only t varies, that is, the
differential of MM' (or, what is the same, the space traversed by the point M
under the accelerating force that animates it), is a dt.

V. This being so, let a be the space that a heavy body animated by gravity p
would traverse in a given constant time 9; then it is evident that (Newton,
Princ. Math. 5

)

a dt2 : 2a = F\3 dt2 : pd2
,

hence

_ 2aF/3 _ 2apm,lf3 Q 2ami 6

pd2 pd2
~ "

62

VI. We shall first notice that we can represent the given time 9 by a constant
line of such magnitude as we like: we must only take care that we take (in order
to express the parts of time that are variable and indetermined) lines t that are
to the line that we take to represent 9 in the ratio of these variable parts of the
time to the given constant time (during which a heavy body traverses the space
a). We can therefore suppose 6 to be such that 62 = 2ami, so that in this case
“ =

P- Hence, since dp = a dt + v ds, dq or v dt + /3 ds must be = v dt + a ds. 7

VII. In order to determine, by means of these conditions, the quantities a
and v, we notice that, since dp = a dt -f- v ds and dq — v dt — u ds, we have
dp + dq = (a + v) (dt + ds) and dp - dq = (a — v)-(dt - ds).

This is tho place in the Pvincipia, I, Sec. X, Prop. LII, where Newton, following
Huygens, discusses the vibrations of the mathematical pendulum, including the cycloidal
motion. Taylor had referred to it in his discussion of the vibrating string.

6 In our notation:

or

d2<p _ 2ami d2<p

~8t2
~

d2 Hx2 '

7 By choice of the unit of time we can take d2<p/dx2 = d2<p\dt2 .
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From this it follows:

1° That a -f v is a function of t + s, and that a — v is equal to a function of

t - s;

2° That therefore we shall have p = — ^ ^ — or simply p =

<p(t + s) + A (t — s), and q = tp(t + s) — A (t — s). From this it follows that

(since dq> = p dt + q ds
)
PM = T(t + s) + F (t - s), T(« + s) and T(t - s)

expressing as yet unknown functions of t + s and t — ,s.
8

The general equation of the curve is therefore

y = Y(t + a) + T(< - 8 ).

VIII. It is easy to see that this equation includes
[renferme

\

an infinity of

curves. To show it, let us take here only a special case, namely, that where

y = 0 when t = 0.

We shorten the further argument: since the curve has to pass through A and B (s = 0,

y = 0; s = l, y = 0), D’Alembert gets F(-s) = -'F(s), 9 T(t - s) = -T(i - s), hence

y = T"(i + s) — T(< — s). Therefore, since T( — s) = T(s)= — 'F(s'), we find that Y(s) is an even
function of s. But '!'(< + /)

— 'l'(t — l) = 0 ,
hence 'F(t + s) must be found in such a way

that 'F(s) — 'F( — s) = 0 and 'Ffi + l) — — l) = 0. To obtain it, the curve tOT [Fig. 4]
is constructed with TR = u = T'(2 ), z — QR, and it is found that this curve is periodic,

Fig. 4

Since

and

d(<Pt + <ps ) = <ptt dt + 9>st (dt + ds) + (pss ds,

we have

Also

<Pss — Ttt,

d(<Pt + <ps) = (<Ptt + <Pst)(dt + ds).

d(<p
t - Vs) = {<Ptt

~ <Pst)(dt - ds).

Hence <ptt + <Pst is a function of t + s and <p„ — <pst is a function of t

function of t + s, rpt — fs of t — s. Result:

s; hence <pt + <Ps is a

<Pt = f(t + ») + g(t ~ «), fs = f(t + s) — g(t - s).

9 D’Alembert here has no parentheses; he writes V — s = —Ts, and so forth, but he does
write r(t — s) and so forth.
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repeating endlessly the part OTK with Q V = 21. D’Alembert shows geometrically how
such a curve can be constructed and compares it with the cycloid. Once OTK is given, then
for any t the curve y formed by the string can be found. The final paragraph points out that
the initial velocity, expressed by A(s) - A(-«), given to each point of the string must be
an odd function, since otherwise the problem would be impossible.

In the second article, D’Alembert calls the curve OTK (Fig. 4) the generating curve
[courbe generatrice

], giving diiferent types and their time of vibration. Then returning to

Taylor’s result, he concludes that if - (d dyjds2
)

:
(1/R) = y:A, where R is the radius of

curvature of the curve at the end of its largest ordinate A, then

ds =
Ady ~

VAA — yy VA

(this implies that, for y = A, dy/ds = 0). When l is the length of the string, R = llInnA,
and when y' is the largest ordinate at time t, then

(
9 = 2ami):

dy' n dt V2am
VA 2 - y' 2 ~ Vl

hence

y^ _ ep — e p ntV2amV— 1

A ' ~ 2V=l’ v ~
eVl

From this D’Alembert obtains

T(t + s) = A
eq + e~

-4
tV~1

j
— (t + S),

and a similar expression for T(t - s), except that he writes c instead of e and n instead of n.

He concludes (Art. XXI):

This is the equation of the vibrating string on the general hypothesis that it

will be in a straight line at the beginning of its motion, and then, under con-
venient impulse, it takes the form of an extremely elongated sine curve

[com

-

pagne de la cycloide extremement allongee].

D’Alembert’s paper continues to Art. XLVII. In Art XXII he writes that it is easy to

see that

+ s) - Y(« - s) = A (<),
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r(«), A, and F expressing functions of t and of s respectively. He gets

T(s) =
g
MsV- 1 _ g- MsV- 1

2a/—T

and

At = sin Mt or cos Mt.

We see that d’Alembert was familiar with Euler’s formula, e
tx = cos x + i sin x. His paper

was followed by a paper of Euler’s in the next volume of the Histoire of the Berlin Academy,
which we give here in abstract.

(2) EULER (1749)

1. Although all that Messrs. Taylor, Bernoulli, and some others have said and
discovered up to now on the subject of the vibratory motion of strings seems to

have exhausted the matter, yet there remains a double limitation of such re-

strictive power that there exists hardly any case in which the true motion of a
vibrating string can be determined. For firstly, they have supposed that the
stretched strings make only almost infinitesimally small vibrations, so that in

this motion the string—whether it is a straight line or a curve—can always be
considered of the same length. The other limitation consists in the fact that they
have supposed that all vibrations are regular, claiming that in every vibration

the entire string, and this once, is stretched directly, and, looking for its curved
figure starting from this situation, they have found it to be a trochoid prolonged
to infinity.

Euler discards the first limitation, but the second one cannot be defined, on the ground
that, “even if vibrations are not regular at the beginning of the motion, after a short time
they will be regular and form a prolonged trochoid.”

4. From this there arises therefore the following question, in which the whole
research is comprised.

If a string of given length and mass is stretched by a given force or weight,
and if instead of the straight lines we give it an arbitrary figure which, however,
differs by only an infinitesimal amount from a straight line, and if then it is at

once released—then to determine the total vibratory motion with which it will

be agitated.
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Euler then, in Arts. 5-29, derives the differential equation of the motion of the string AB
of length a and mass M, acted upon by a force F. Then if dy = p dx + qdt, dp = r dx + s dt,

dq = sdx + u dt, he finds for the ordinate PM = y as function of AP = x the equation:

P = accelerating force at an arbitrary point M
Far _ 2d dy

M dt

Then, writing Fa\2M = b,x + tVb = v,x - tVb = u, he finds

dq + dpVb = dv(s + rVb),

dq — dpVb = du(s — rVb),

which leads him to the expression

y = f(x + tVb) + <p(x - tVb)

[Euler writes/
: (

x

+ tv'b)]; by virtue of the initial conditions, this becomes

V = if(x + tVb) + \f(x - tVb).

30. Thus having found the general solution, let us now consider some special

cases of it, in which the eellike curve [courbe anguiforme

]

of Fig. 1 is a continuous
curve, of which the parts are related by virtue of the law of continuity, in such

Fig. 1

m N

a way that its nature can be expressed by an equation [de maniere que sa nature
puisse etre comprise par une equation: ut eius natura aequatione comprehendi
possit]. And first: these curves always will be transcendental, since they are cut
by the axis in an infinity of points. If the length of the string AB = a, and an
arbitrary abscissa AP = u, and if 1 : 77 as the diameter of the circle to the cir-

cumference, then it is clear that the following equation, expressed by sines,

provides a curve of the required form

:

t> it • rrU . 2?tU
. SnUPM = a sin — + B sin + y sin +a a r

a
s ,o sin + etc.

a

Indeed, if instead of u we take a, or 2a, or 3a, or 4a, etc., the ordinate PM
vanishes, and if u is taken negative, the ordinate itself changes into its negative.
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If therefore the curve AMB were the primitive figure of the string, then after
a time t, in which the heavy body descends by an altitude = z, and setting
r ~ ^ ' - i'az .)I ) . to the abscissa x in the figure of the string will correspond the
ordinate y such that

y - la sin (* + v) + \fi sin — (x + v) + |y sin — (x + v) + etc.
11 cl d ’

+ sin - (x - v) + sin (x - v) + \y sin ~ (x - v) + etc.

31. Now, since sin (a + b) and sin (a - b) = 2 sin a cos b [Euler writes sin. a.
cos. 6.], this equation will be transformed into this form:

y = « sin ~ cos ~ + p Sin^ cos— + y sin— cos— + etc.“ “ a a a a

and the primitive figure of the string will be expressed by this equation:

y = asm— + + ySm— + etc.,
O' CL CL

which repeats itself every time that v becomes either 2a, or 4a, or 6a, etc. But
when v is either a, or 3a, or 5a, etc. the figure of the string will be

. 77X 2TTX . 377*
V = - “ sm — + /J sin y sin b etc.,

CL CL a,

where we must observe that when £ = 0, y = 0, S = 0, etc. we obtain the case
that is usually believed to be the only one in the vibration of strings, namely,

. 7TX 7TV .

y a sm —— cos— > in which the curvature of the string is perpetually the line

of the sines, or a trochoid prolonged to infinity. But if only the term
j
8, or y, or S,

etc., occurs, then this forms cases where the time of vibration is less, either by
the double, or the triple, or the quadruple, etc.

This paper was followed by another one
Academy. Again we give it in abstract.

by D’Alembert in the Histoire of the Berlin

(3) D’ALEMBERT (1750)

1. In article XXII of this paper (Mem. Berlin, 1747) I have found by a very
indirect method that if T(f + a) - T(f - S)

= A(t)T(s), then I» = sin Ms
and A (t) = sin Mt or cos Mt. This proposition is true and exact from the point
of view from which I saw it at that time, but having had occasion to consider it
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from a more general point of view, I have found a direct way of solving this

problem, which gives an opportunity for some observations.

This new solution starts by differentiating the equation

T(< + s) - T(< - s) = A(t)T(s)

with respect to t and to s

:

r (t + s)~ r (t - S) =
d-M i»,

r(s) = ^’

r(t + s) + r(£ — s) = a (t)

dr(s)

ds ’

from which by renewed differentiation it follows that

ddA(t) _ d dV(s)

A (t) dt2 ds2 F(s)’

hence d d A (t) = A dt2 A (t), d dF(«) = A ds2 r(s), A being a constant. After some computation
this leads to:

A (t) = Met '/A + ge~ t '/A
, F(s) = Mes '/A - Me-*',A

Here e is used for D’Alembert’s c; M and g are constants determined by boundary con-

ditions. If T'(£ + s) - Y(t - s) = 0 for s = 0 and s = l, as in Art. XXII, V

A

must be
imaginary. Consequences of this process of differentiating lead further to dny = ley dxn

,

which had been integrated by Euler and by D’Alembert himself. Then:

In the Memoires of 1748 Mr. Euler has discussed the vibrating string by a

method quite similar to mine as far as the essential part of the problem is con-

cerned, but only (it seems to me) a little beyond this. This great geometer
remarks (as I have done), that the curve formed by the string at the beginning

of its motion is the same that I have called the generating curve. But I believe

that a warning should here be in place—for fear that some readers may get a
wrong sense of these words—that in order to have this generating curve it is not
sufficient to transport the initial curve alternately above or below the axis. It

is also necessary that this curve should satisfy the conditions that I have ex-

pressed in my paper. These conditions are that, if we suppose y = ^ for the

equation of the initial curve, then 2 must be an odd function of s, and that in

general the ordinates that are distant from each other by the quantity 21 must
be equal. And this cannot be so unless the curve is not mechanical and such as I
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have determined it in my Memoire. In any other case the problem cannot be
solved, at least by my method, and I am not certain whether it will not surpass
the power of known analysis. Indeed, it seems to me that we cannot express y
analytically in a more general way than by supposing it a function of t and s.

But under this supposition we find the solution of the problem only for the cases

in which all the different figures of the vibrating string can be comprehended by
one and the same equation. It seems to me that in all other cases it will be im-
possible to give y a general form.

I) Alembert then makes some remarks on the time of vibration, which, he says, may well
be independent of the form of the curve, although this will be difficult to prove.

(4) DANIEL BERNOULLI (1753)

Daniel Bernoulli (1700—1782), son of Johann, after some years in Saint Petersburg, returned
in 1733 to Basel, where he became a professor in the university. He was mostly interested in
applied mathematics. Through his Hydrodynamica (1738) he became a founder of hydro-
dynamics and the kinetic theory of gases.

I. Mr. Taylor was the first to obtain the number of vibrations made in a given
time by a string uniformly thick, of given length and given weight, and stretched
by a given force. It was not possible to determine this number without knowing
in advance the curve taken by the string during the whole time that its vibration
lasted, he therefore proved that this curve was always “the companion of an
extremely elongated cycloid,” for which the ordinates represent the sines of the
arcs represented by the abscissas. I think that only in this form can the vibra-
tions become regular, simple, and isochronous despite the inequality of the
deviations

[excursious\ . Since I always had this idea I could only be surprised to
see in the Memoires [of the Berlin Academy] of the years 1747 and 1748 an
infinity of other curves claimed to be endowed with the same property. I really
needed the great names of Messrs. D’Alembert and Euler, whom I could not
suspect of any carelessness, to make me examine whether there would not be
anything in this aggregate of curves that conflicted

[
equivoque

] with those of
Mr. Taylor, and in what sense they could be admitted. I immediately saw that
this multitude of curves could be admitted only in quite an improper sense. I
do not the less esteem the calculations of Messrs. D’Alembert and Euler, which
certainly contain all that analysis can have at its deepest and most sublime, but
which show at the same time that an abstract analysis which is accepted without
any synthetic examination of the question under discussion is liable to surprise
rather than enlighten us. It seems to me that we have only to pay attention to
the nature of the simple vibrations of the strings to foresee without any calcula-
tion all that these two great geometers have found by the most thorny and
abstract calculations that the analytical mind can perform.
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II. Let us first observe that, according to Mr. Taylor’s theory, a stretched

string can perforin uniform vibrations in an infinity of ways, physically speaking

different from each other, but geometrically speaking amounting to the same,

since in every one of them only the unit that serves as measure is changed. These
different ways are characterized by the number of loops [ventres] that the string

can form during its vibration. When there is only one loop [Fig. 1], then the

vibrations are the slowest, and they produce the fundamental tone; when there

are two loops, and one node
[
noeud

]
in the middle of the axis [Fig. 2], then the

vibrations are doubled, and they produce the octave of the fundamental tone;

when the string forms three, four, or five loops, with two, three, or four nodes,

at equal distances, as in Figs. 3, 4, 5, then the vibrations are multiplied by three,

Fig- 3 Fig. 4

Fig. 6

four, or five, and produce the twelfth, the double octave, or the major third of

the double octave relative to the fundamental tone. In every type of these

vibrations the total displacements can be large, or small, at discretion, provided
that the largest must be considered as extremely small. The nature of these

vibrations is such that not only does each point begin and end every simple

vibration at the same instant, but also all the points place themselves after

every simple half-vibration in the position of the axis AB. We must regard all

these conditions as essential, and then we have at once the curves described by
Mr. Taylor as satisfying the problem.

But although, separating these conditions, we can find an infinity of curves

which separately satisfy some condition, I shall show how little reason there is in

this case to call the vibrations isochronous for every point. It is with these

vibrations as with the reciprocal motions of bodies that descend and ascend
alternately on a curve: if we require that all these descents, as well as the

ascents, large or small, be isochronous, the curve can only be the cycloid. How-
ever, if one simply wants the entire vibrations to be isochronous with respect to

each other, then one can give as many curves as one likes that satisfy this

problem. This is so because I have shown in the Memoires of Petersburg that,

whatever curve of descent may be given, it is always possible to determine the

curve of ascent such that the two times used for descent and ascent, taken

together, are constant, whatever inequality there may be between the ampli-

tudes of the deviations.
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In Sec. Ill there is experimental proof that sounds can have an infinity of simple vibra-
tions, shown for trumpets, flutes, and so forth, together with other remarks on music. No
finite formula by which to express them can be given. Reference is made to a paper of
1749 by Euler, where he has given a solution like Bernoulli’s.

IV. My conclusion is that all the sounding bodies contain potentially an
infinity of tones, and an infinity of corresponding ways of performing their
regular vibrations in short, that in every different kind of vibration the
inflections of the parts of the sounding body are made in a different way. How-
ever, it is not of this multitude of vibrations applied to stretched strings that
Messrs. D’Alembert and Euler claim to speak; this was not unknown to Mr.
Taylor. They multiply to infinity every kind of vibration, create an infinity of
curves according to every interval between two neighboring nodes, such that
every point begins and ends its vibration at the same instant—while, according
to the theory of Mr. Taylor, every one of these intervals must necessarily assume
the only curve possible, that of the companion of the extremely elongated
cycloid. The apparent contradiction between such great geometers seems to me
to ask for some clarification.

Then, in Secs. V-XI, Bernoulli claims that all the new curves of D’Alembert and Euler
omprised in his construction.

XII. Let us see if all the new curves found by Mr. Euler are contained in our
discussion. For this purpose we must give an equation for all Taylorian curves,
of which our five figures are as many examples. I shall use the notation of Mr.
Euler. Let the length of the string AB be = a, let n be the semicircumference
of the circle with unit radius, let the largest ordinate at the middle of every loop
for the first figure be = x, for the second = £, for the third = y, for the fourth
— 8, and finally let x be an arbitrary abscissa, and y the ordinate for the abscissa;
then we shall have, according to Mr. Taylor:

for the first figure

for the second figure

for the third figure

for the fourth figure

y
. 7TX

a sin— >

a

0 . 2nx
y = p sin ,

a

y = y sin -
37TX

y = & sin
sin 4:7tx

and so forth.

a
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Hence, combining all these curves, according to Fig. 6 (for which we have

combined only the first two figures), 10 we shall have in the general case the

following equation for the same abscissa x:

. ttx
. 2ttx . 3vx . . 4ttx

y = a sin bp sin b y sin b o sin b etc.

,

a a a a

in which the quantities a, jS, y, 8, etc. are positive
[affirmatives] or negative

quantities.

XIII. Here we have therefore found this infinity of curves without any

computation, and our equation is the same as that of Mr. Euler.

This refers to Euler’s paper of 1749, but in Euler’s paper it is a special case of the eellike

curve, namely, a curve whose nature might be expressed by an equation [puisse etre comprise

par une equation].

He does not treat this infinite multitude as being the general case, and he

gives it only in §30 as one of the particular cases, but this is certain—although

I am not yet quite clear about it— : if there are still other curves, then I do not

see in what sense they can be admitted.

Then follow among others some special cases of the equation, and a mechanical derivation

of Bernoulli’s equation by integration of Hooke’s law for every term.

This paper was followed by one of Euler’s, part of which is given now.

(5) EULER (1753)

Euler begins by stating that it is to Bernoulli that we owe the felicitous idea that the same

string can produce at the same time several different sounds, an idea that can be extended

to various other types of sounding bodies. Then he continues:

2. Mr. Bernoulli draws all his excellent reflections uniquely from the investiga-

tions made by the late Mr. Taylor on the motion of strings, and maintains

10 Figure 6 has been somewhat simplified.
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against Mr. D’Alembert and me that the solution of Taylor is sufficient for the
explanation of all motions to which a string can be subjected, in such a way that
the curves which a string takes during its motion are always either a simple

elongated trochoid, or a mixture of two or more curves of the same kind. Now,
although such a mixture can no longer be regarded as a trochoid, and the pos-

sibility of combining several of Mr. Taylor’s curves already makes his solution

insufficient in other respects as well, the motion of a curve could be such that it

would be impossible to reduce it to the type of Taylor trochoids.

3.

If all curves that the string could form during its motion were described

by the equation

.77* 27TX . 3ttx - . 4t7*
y = a sin b p sin b y sin b 8 sin b etc.,

a a a a

then Mr. Bernoulli’s opinion would be justified, since by taking every term
separately we see that such an equation as y = p. sin mx/a always gives one of
the trochoids indicated by Mr. Taylor, and our equation will be formed by
several trochoids. However, even if the number of terms in this equation be-

comes infinite, I doubt whether we can say that the curve is composed of an
infinity of trochoids. The infinite number seems to destroy the nature of such a
composition. But I agree that Mr. Bernoulli could have come to the discovery of
all these curves by the reasoning based on the composition of Taylorian tro-

choids alone and that the equation mentioned, even if continued to i nfin ity is

a very natural result of this reasoning.

4.

However, there are cases where this equation, if continued to infinity, can
be reduced to a finite equation, and then it would be very improper to say that
the curve is formed by an infinity of trochoids, since the equation itself would
provide an idea and a much simpler construction for it. For instance, if the
coefficients a, /3, y, S, etc. form a geometric progression, then the infinite

equation is reduced to this finite equation

c sin 7rxla
y
—

i

1 — n cos TTx/a
’

which without doubt determines curves that can fit the motion of a string, in
agreement with Mr. Bernoulli, provided that n is a number less than unity. This

string could therefore well produce at the same time an infinity of sounds, of
which the higher would become weaker and weaker; but the equation offers us
a much simpler idea of this curve than if we were to say that it is composed of an
infinity of Taylorian trochoids.

5.

But there is more: I have give this equation,

• 77*
. n . 277* . 3t7* . . 477*

V = “Sin b p sin b y sin b 8 sin b etc.,a a a a

only as a particular solution of the formula which in general contains all the
curves that a string in motion can assume and there are an infinity of other
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curves that could not be expressed by this equation. If Mr. Bernoulli would
agree with this, then he could not have maintained that all curves of a vibrating

string could result uniquely from a combination of two or three Taylorian

curves, and he would have recognized that the reasoning based on this combina-

tion is not sufficient to provide a complete solution to the problem in question.

Neither would he have regarded the method used by Mr. D’Alembert and me as

too cumbersome to arrive at a general solution, which could be obtained from a

simple physical consideration. The principal question which I must face is

therefore: are all curves of a string set in motion contained in this formula, or

are they not ?

6. If the Bernoulli solution is not the general one, then the Euler-D’Alembert solution

is better:

7. Now it seems to me that this fact is beyond doubt, when we consider that

we can begin by giving the string an arbitrary shape. Indeed, let us conceive that

the string, before it is released, has been given a figure not contained in the

form y = a sin nx/a + f}
sin 2nx/a + etc. There is no doubt that the string,

after being suddenly released, will be forced into a certain motion. It is also

certain that the figure which it will assume after the first instant will be very

different from that described by this equation, and, even if one were to main-

tain that after several instants it will assume a figure contained in this expres-

sion, it cannot be denied that before this happens the motion will be quite

different from that which is contained in the reasoning of Mr. Bernoulli. Since

this first motion is therefore certainly not in agreement with the laws derived

from Taylor’s theory, it seems to me that this fact alone is quite sufficient to

show that this theory is not able to explain to us all motions to which a string

is susceptible.

Euler continues this argument, pointing out that the initial figure “often cannot be
expressed by any equation, be it algebraic or transcendental, and is not even included

[renfermee] in any law of continuity.” Then he defines the problem:

11. Having at the beginning given to the string an arbitrary figure, either

algebraic, or transcendental, or even mechanical, to determine the motion of the

string after its release. Stating the problem thus, it is quite clear that the solu-

tion obtained from the combination of two chords can only be regarded as a

very special one. But, it will be asked, is a general solution possible ? I believe

that the solution which I have given is in no respect limited; at any rate I

cannot discover any fault in it, and nobody has yet shown the insufficiency. It is
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true that Mr. D’Alembert, although he has rebuked me, saying that my solution

was not different from his, has claimed—but without giving any proof—that my
solution does not extend to all possible figures that the string can have at the

start. It is the same sentiment that Mr. Bernoulli seems to share when he
maintains that the motion of a string cannot be determined unless its initial

figure is contained in the equation to which I have already referred several times.

Then Euler tackles the problem again and discusses his solution: y = <p(x + ct) +
T(£ — ct), <p, T" “two arbitrary functions.” This part is of a certain interest, because
Euler here approaches the modern notation for partial differentiation. When y — P dx

+ Q dy + R du, he writes

'-(!) «-(!)•

the differential equation is written

Note on the emergence of the concept offunction. The concept of function appeared gradually

in such works as Oresme’s latitude of forms, Galilei’s study of the dependence of velocity

on time, and Descartes’s graphical representation of algebraic expressions. In the tabulation

of chords and of sines, the function concept can even be traced to antiquity; the many
tables published during the sixteenth century constituted an added preparation. Newton
may have been the first to formulate a descriptive term, using the word genita for a quantity
obtained from other quantities by means of the four species (Selection V.6). The first ap-

pearance in print of the term functio may have been in Leibniz’s “De linea ex lineis numero
infinitis ordinatim ductis,” Acta Eruditorum (1692), Mathematische Schriften, Abth. 2,

Band I, 266-269, a paper in which he shows how to find the evolute of a family of

curves. Here we read of the “tangent line and some other functions depending on it,”

for example, the perpendiculars to the tangent drawn from the curve to an axis.

(This paper contains a number of other terms now commonly used; see Selection

V.l, note 1.) We find the same idea in another of Leibniz’s papers: “Considerations sur la

difference qu’il y a entre l’analyse ordinaire et le nouveau calcul des transcendantes,
’

’ Journal
des Sqavans (1694), Mathematische Schriften, Abth. 2, Band I, 306-308; here he calls the

abscissa, the ordinate, the chord, the tangent, and the normal (both drawn from the curve to

an axis), and other related segments “functions” of a curve. The term was then taken over
by the Bernoullis. In July 1698 Leibniz wrote to Johann Bernoulli, “I am pleased that you
use the term function in my sense.” Bernoulli replied from Groningen in August 1698: “To
denote a function of some indeterminate quantity x, I like to use the corresponding capital

letters X or Greek f ,
so that we can see at the same time on which indeterminate quantity

the function depends.” In the same letter he used the symbols X = x and X = Vx (Mathe-

matische Schriften, Abth. 1, Band III, 531-532). Gradually the function concept lost its

immediate geometric character

Johann Bernoulli later defined the term as follows: “We here denote by function of a
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variable quantity a quantity composed in some way or other of this variable quantity and
constants” {Opera omnia, II, 241). In this paper Bernoulli then used the term “function”
quite freely in enunciating his theorems. Euler took it over and in a paper in Commentarii
Academiae Scientiarum Petropolitanae 7, 1734-35 (1740), 184-200 {Opera omnia, ser. I,

vol. 22, 57-75) introduced the notation/)—h c) for “an arbitrary function of - + c.” In

Chapter I of his Introductio of 1748 (see Selection V.15) Euler repeated Bernoulli’s state-
ment, adding the word analytic,” and continued, “Therefore every analytic expression
in which apart from a variable quantity z all quantities that compose this expression are
constants is a function of this z, such as a + 3z, az - 4zz, az + baa - zz - c2

,
etc.”

((

Euler then classified functions, using the terms “algebraic” and “transcendental,”
single-valued and multiple-valued.” In the second volume of the Introductio he dis-

cussed curved lines, and wrote (Chapter I)

:

A continuous curve is of such a nature that it can be expressed by one definite function
of a;. But if a curved line is of such a nature that various parts of it, BM, MD, DN, etc.,
are expressed by various functions of x such that, after the part BM has been defined with
the aid of one function, the part MD is described by another function, then we call such
curved lines discontinuous or mixed and irregular, because they are not formed according
to one constant law and are composed of parts of various continuous curves.”

In his Institutiones calculi differentials (Saint Petersburg, 1755), Euler returned to these
statements in the Introductio and then showed how to differentiate these functions. It is
clear, therefore, that in Euler’s opinion (and in that of his contemporaries and pupils), a
function was a relation to be expressed by some analytical expression, as a polynomial, a
sine, a logarithm, or even an integral of such expressions.

It was the exchange of opinions among Euler and some of his colleagues due to the
vibrating-string discussion that brought about a certain feeling of disturbance among those
who used the concept of function in this way. As we have seen in Selection V.16, Taylor had
shown that there are sinusoidal solutions. D’Alembert found the solution in the form
* = f (at

.

+ *) + /(«* ~ *)> with /(*) an “arbitrary function,” but was not sure that this
“analytic way,” as he called it, of expressing a solution was sufficient to describe all forms
of the string m motion; in other words, he was not sure whether any continuous curve could
be given by an expression y = J(x). Euler thought that this could be done. But Daniel
Bernoulli derived the solution in the form of an infinite trigonometric series and gave it as
his opinion that this combination of “Taylorian” functions could give the general solution,
something Euler doubted. Euler’s conclusion was (Selection V.16(5)) that his trigometric
solution was only a particular solution of the formula which in general contains all the
curves that the string in motion can assume, and there are an infinity of other curves
that cannot be expressed by this equation.

For Euler, “arbitrary functions” were able to represent all “curves of the string” and
conversely. Later (1759) Lagrange argued that an arbitrary function in great general-
ity can be expressed by a trigonometric series. On Lagrange’s definition of function see
Selection V.19.

As we have said, the concept of function was clarified in the nineteenth century by the
work of Fourier, Cauchy, Dirichlet, and Riemann; see, for example, P. E. B. Jourdain,
“The origins of Cauchy’s conceptions of a definite integral and of the continuity of a
function,” Isis 1 (1913), 661-703; A. Pringsheim in Encyklopddie der mathematischenWissenschaften (Teubner, Leipzig), II (1899), 1-53.
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17 LAMBERT. IRRATIONALITY OF n

By 1750 the number -n- had been expressed by infinite series, infinite products, and infinite

continued fractions, its value had been computed by infinite series to 127 places of decimals
(see Selection V.15), and it had been given its present symbol. All these efforts, however,
had not contributed to the solution of the ancient problem of the quadrature of the circle;

the question whether a circle whose area is equal to that of a given square can be constructed
with the sole use of straightedge and compass remained unanswered. It was Euler’s dis-

covery of the relation between trigonometric and exponential functions that eventually led

to an answer. The first step was made by J. H. Lambert, when, in 1766-1767, he used Euler’s

work to prove the irrationality not only of tt, but also of e.

Johann Heinrich Lambert (1728-1777) was a Swiss from Miilhausen (then in Switzer-

land). Called to Berlin by Frederick the Great, he became a member of the Berlin Academy
and thus a colleague of Euler and Lagrange. His name is also connected with the intro-

duction of hyperbolic functions (1770), with perspective (1759, 1774), and with the so-called

Lambert projection in cartography (1772).

Lambert published his proof of the irrationality of tt in his “ Vorlaufige Kenntnisse fur

die, so die Quadratur und Rectification des Circuls suchen,” Beytrage zum Gebrauche der

Mathematik und deren Anwendung 2 (Berlin, 1770), 140-169, written in 1766, and in more
detail in the "Memone sur quelques proprietes remarquables des quantites transcendentes
circulaires et logarithmiques,” Histoire de VAcademie, Berlin, 1761 (1768), 265-322, pre-

sented in 1767. They have been reprinted in the Opera mathematica, ed. A. Speiser (2 vols.;

Fiissli, Zurich, 1946, 1948), I, 194-212, II, 112-159. The following text is a translation from

pp. 132-138 of vol. II. Lambert writes tang where we write tan. See also F. Rudio, Archi-

medes, Huygens, Lambert, Legendre. Vier Abhandlungen iiber die Kreismessung (Teubner,
Leipzig, 1892).

37. Now I say that this tangent [tan <p/w] will never be commensurable to the

radius, whatever the integers u>, cp may be.
1

1 In the previous sections Lambert expands tan v, v an arbitrary arc of a circle of radius 1,

into a continued fraction, and gets for v = \jw

1
tan v

1

3w — 1

5w — 1 etc.

Investigating the partial fractions and their residues, he finds infinite series like

tan v — — +
1 1

w w(3w2 - 1) (3w2 - l)(15ui3 -6w)
^

and shows (in §34) that these series converge more rapidly than any decreasing geometric
series. Then, if w = w : <p, to, <p being relatively prime integers, he finds for the partial
fractions of tan v (§36):

V 3cui

p

15w2
(p — fp' 105co3 <jo — lOcoip3

and (§37):

3to 2 — <p
2 15co3 — 6y2

to 105to4 — 45co 2
c

p

2 + <p
2

’ etc.,

tan — = — + <P* <P
5

co co to (3 co
2 —

(p
2

) (3co
2 — 9?

2
)(15co

3 — 6<o 2 <p)

Then follows the text which we reproduce.

+ etc.
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38.

To prove this theorem, let us write

such that M and P are quantities expressed in an arbitrary way, even, if you
like, by decimal sequences, which always can happen, even when M, P are
integers, because we have only to multiply each of them by an irrational
quantity. We can also, if we like, write

M = sin — , P = cos —

»

CO CO

as above. And it is clear that, even if tan 93/co were rational, this would not
necessarily hold for sin 95/co and cos 93/co.

39 . Since the fraction M\P exactly expresses the tangent of 93/co, it must give
all the quotients w, 3w, 5w, etc., which in the present case are

co 3co 5co 7CO
1 ’

’ + — >
> etc.

95 93 93 9,

40. Hence, if the tangent of 95/co is rational, then clearly M will be to P as an
integer y is to an integer n, such that, if y, n are relatively prime, we shall have

M
: fj,

= P : tt = D,

and D will be the greatest common divisor of M, P. And since reciprocally

M :D = y, P:D = tt,

we see that, since M, P are supposed to be irrational quantities, their greatest
common divisor will be equally an irrational quantity, which is the smaller, the
larger the quotients 91, n are.

41. Here are therefore the two suppositions of which we must show the incom-
patibility. Let us first divide P by M, and the quotient must be to

: 9,. But since
co

:
95 is a fraction, let us divide <pP by M, and the quotient co will be the 9>-tuple

of co 393. It is clear that we could divide it by 99 if we wished to do so. This is not
necessary, since it will be sufficient that co be an integer. Having thus obtained
co by dividing 93P by M, let the residue be R'. This residue will equally be the
93-tuple of what it would have been, and that we have to keep in mind. Now,
since P.D = -n, an integer, we still have <pP:D = 9377, an integer. Finally!
R' : D will also be an integer. Indeed, since

93P = ojM + R',

9>P ojM R'U =
^D~

+
~D

we shall have
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But <pP : D = <jm, idM : D = cop; hence

R'
<fm = wfi + -^>

which gives

R'

~U
= cprr — cup = integer,

which we shall call r', so that R' jD = r'

.

The residue of the first division will

therefore still have the divisor D, the greatest common divisor ofM, P.

42. Now let us pass to the second division. The residue R' being the <p-tuple

of what it would have been if we had divided P instead of <pP, we must take this

into account by the second division, where we divide <pM, instead of M, by R'

in order to obtain the second quotient, which = 3cu : <p. However, in order to

avoid the fractional quotient here also, let us divide cp
2M by R'

,

in order to have
the quotient 3cu, an integer. Let the residue be R"

,

and we shall have

cp
2M = 3coR' + R"

\

hence, dividing by D,

<p
2M 3o>R' R"

D ~ D +
H"

But

hence

q>
2M
D = <p

2m = integer,

3coR'

D 3tor' = integer;

(p
2m = 3cur' +

which gives R"/D = <p
2m — 3cor' = an integer number, which we shall write

= r", so that

Hence the greatest common divisor ofM
,
P, R' is still of the second residue R"

.

43. Let the next residues be R”, Riv
, . . . , Rn

,
Rn + 1

,
Rn + 2

, . .

.

which corre-

spond to the cp-tuple quotients 5co, 7o>, . . ., (2n - l)cu, (2n + l)co, (2n + 3)co,

. .
.

,

and we have to prove in general that if two arbitrary residues Rn
,
Rn + 1

,
in
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immediate succession, still have D as divisor, the next residue Rn + 2 will have
it too, so that, if we write

Rn :D = rn
,

Rn + l.J) _ rn + l
)

where rn and rn + 1 are integers, we shall also have

Rn + 2 :D = rn+2
,

an integer. This is the demonstration.

omit this proof in §44, since the reasoning follows that of §42.

45. Now we have seen that r', r" are integers (§§41,42), hence also r'\

rlv
> ,

r
n

, . . . to infinity will be integers. Hence any one of the residues R',
R

, R , , Rn
, ... to infinity will have D as common divisor. Let us now find

the value of these residues expressed in M
,
P.

46. Every division provides us with an equation for this purpose, since we
have

R' = <fP — wM,

R" = q?M _ 3wR'
t

R'" = 9
2R' _ 5WB", etc.

But let us observe that in the existing case the quotients w, 3to, 5to, etc. are
alternately positive and negative and that the signs of the residues succeed each
other in the order — — + + . These equations can therefore be changed into

R' = coM — <pP,

R" = 3toR' - <p
2M,

R'” = 5coR" - <p
2R',

or in general

Rn + 2 = (2n - 1 )Rn + 1 - cp
2Rn

.

From this we see that every residue is related to the two preceding in the same
way as the numerators and denominators of the fractions that approximate the
value of tan <p/co (§36).
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47. Let us make the substitutions indicated by these equations in order to

express all these residues by M, P. We shall have

R' = ojM — cpP,

R" = (3co
2 -

<p
2)M - 3cocpP,

R"’ = (15co3 - 6co<p
2)M - (15co2cp - <p

3)P, etc.

And since these coefficients of M, P are the denominators and numerators of the

fractions we found above for tan 99/co
( §36), we see also that we shall have

M 99 R'

P co coP

M 3w<p R"

P 3co
2 -

<p
2

(3co
2 - cp

2)P

M 15coV - 9>
3 Rm

P 15co3 - 6CO99
2

(15co 3 - 6co<p
2)P

etc.

48. But we have

hence (§§37, 34)

M 99

-p = tan —

;

r co

M
+P co co(3co

2 — 9>
2

) (3co 2 — 9j
2
)(15co

2 — 6C092
)

+ etc.,

M 3co9>

P 3co
2 - cp

2
(3co

2 - 9>
2
)( 15co

3 - 6C09.
2

)

+ etc.;

hence

R'
+

coP co(3co
2 — cp

2
) (3co

2 — 9>
2
)( 15c0

3 — 6w<pz
]

+ etc.,

R"

(
3co

2 - 9>

2)P
(3co

2 - 99
2
)( 15co

3 - 6C099
2

)

+ etc.,

Rm

(15co3 - 6co9>
2)P (15co3 - 6co9>

2
)( 105co

4 - 45coV +
+ etc.

Thus all the residues can be found by means of the sequence of differences (§37)

9 _ <P
,

9>
3

99
s

tan — = — +
co co co(3co

2 — cp
2

) (3co
2 — 9>

2
)( 15co

3 — 6C099
2

+
(15co3 - 6co9>

2
)(105co

4 - 45coV + 9
4

)

+ etc.
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by omitting 1, 2, 3, 4, etc. of the first terms and multiplying the sum of the
following terms by the first factor of the denominator of the first term that is

retained and by P.

49. Now, this sequence of differences is more convergent than a decreasing
geometric progression (§§34, 35). Hence the residues R'

,
R" . R"', etc. decrease

in such a way that they become smaller than any assignable quantity. And as
every one of these residues, having D as common divisor, is a multiple of D, it

follows that this common divisor D is smaller than any assignable quantity,
which makes D = 0. Consequently M : P is a quantity incommensurable with
unity, hence irrational.

50. Hence every time that a circular arc = 95/w is commensurable with the radius
— 1, hence rational, the tangent of this arc will be a quantity incommensurable with
the radius, hence irrational. And conversely, every rational tangent is the tangent
of an irrational arc.

51. Now, since the tangent of 45° is rational, and equal to the radius, the arc
of 45 ,

and hence also the arc of 90°, 180°, 360°, is incommensurable with the
radius. Hence the circumference of the circle does not stand to the diameter as an
integer to an integer. Thus we have here this theorem in the form of a corollary
to another theorem that is infinitely more universal.

52. Indeed, it is precisely this absolute universality that may well surprise us.

Lambert then goes on to draw consequences from his theorem concerning arcs with
rational values of the tangent. Then he draws an analogy between hyperbolic and trigono-
metric functions and proves from the continued fraction for e

u + 1 that e and all its powers
with integral exponents are irrational, and that all rational numbers have irrational natural
logarithms. He ends with the sweeping conjecture that “no circular or logarithmic trans-
cendental quantity into which no other transcendental quantity enters can be expressed
by any irrational radical quantity,” where by “radical quantity” he means one that is

expressible by such numbers as V2, V3, </l, ^2 + V3, and so forth. Lambert does not
prove this; if he had, he would have solved the problem of the quadrature of the circle. The
proof of Lambert’s conjecture had to wait for the work of C. Hermite (1873), and F. Linde-
mann (1882). See, for instance, H. Weber and J. Wellstein, Encyklopadie der Elementar-
Mathematik (3rd ed.; Teubner, Leipzig, 1909), I, 478-492; G. Hessenberg, Transzendenz
von e und n (Teubner, Leipzig, Berlin, 1912); U. G. Mitchell and M. Strain, “The number e

”

Osiris 1 (1936), 476-196.

18 FAGNANO AND EULER. ADDITION THEOREM OF ELLIPTIC
INTEGRALS

Count Giulio Carlo de’Toschi di Fagnano (1682-1766), Spanish consul in his home town of
Sinigaglia (Italy) and an amateur mathematician, published in the Giornali de’letterati
d’ltalia for the years 1714-1718 a series of papers on the summation of the arcs of certain
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curves, a problem induced by a paper of Johann Bernoulli’s of 1698. 1 These papers of
Fagnano are reproduced in his Opere mathematiche (2 vols.; Albrighi, Segati & Co., Milan,
Rome, Naples), II (1911), from which our selection has been translated. In vol. 19 of the
Giornali Fagnano posed the following problem {Opere, II, 271):

Problem. Let a biquadratic primary parabola, which has as its constituent
equation x4 = y, and also a portion of it, be given. We ask that another portion
of the same curve be assigned such that the difference of the two portions be
rectifiable.

It had already been recognized by the brothers Bernoulli that what would be called ellip-

tic arcs are not rectifiable, but that sums or differences might be representable by arcs of
circles or straight lines. Fagnano gave a solution of his own problem, and generalized it to
a number of cases, all involving elliptic integrals. One of his conclusions, sometimes called

Fagnano’s theorem, dates from 1716 and is found in the paper entitled “Teorema da cui si

deduce una nuova misura degli archi elittici, iperbolici, e cicloidali,” Giornali 26 [Opere, II

287-292).

Theorem. In the two polynomials below, X and Z, and in equation (1) the
letters h, l, f, g represent arbitrary constant quantities.

I say, in the first place, that if in equation (1) the exponent s expresses the
positive unity [s = +1], then the integral of the polynomial X - Z is equal

to — hxz/V —fl.

I say, in the second place, that if in the same equation (1) the exponent s

expresses the negative unity [s = —1], then the integral of

Here

(
1

)

X + Z xzV— h

~vT

^ _ dxVhx2 + l

VpFTg

„ dzVhz2 + l
Zj ZT— »

V/z2 + g

(fhx
2
z
2
y + [fix

2
y +„ (fiz

2
y + (giy = o.

1 An account of the contributions of Fagnano to this problem can be found in Cantor,
Oeschichte, III (2nd. ed., 1901), 465—472. Johann Bernoulli’s paper, entitled “Theorema
universale rectification! linearum curvarum inserviens” (Universal theorem useful for the
rectification of curved lines), appeared in the Acta Eruditorum of October 1698 (Opera omnia,
I> 249-253); in it he asked whether there are curves with arcs that are not rectifiable,

but are such that sums or differences of arcs are rectifiable. He claims that the parabola
3a2

y = x3 has that property. See Selection V.10, note 4.



376
|

V NEWTON, LEIBNIZ, AND THEIR SCHOOL

The first part of the theorem Fagnano applies to the difference of arcs of an ellipse and of
a cycloid, the second part to the sum of arcs of a hyperbola.

Then, in another article, “Metodo per misurare la lemniscata,” Giornali 29 (1718; Opere,
II, 293-313), he applied his considerations to the lemniscate, a curve discovered by Jakob
Bernoulli in 1694.

2

After a reference to the two brothers Bernoulli, Fagnano continues:

Let the lemniscate be CQACFC [Fig. 1], its semiaxis CA = a; then it is known
that if we take the origin of the abscissa (x) at the center C and call (y) the
ordinates [le ordinate

] normal to the axis, then the nature of the lemniscate is

D

expressed by this equation: x2 + y
2 = aVx2 - y

2
. It is also known that if we

call z the indeterminate chord CQ = V

x

2 + y
2

,
then the direct arc

and the inverse arc

QA = arc. CA — arc. CQ = - •

•' V

a

4 — z4

2 The lemniscate was introduced by Jakob Bernoulli in an article entitled “Construetio
curvae accessus et recessus aequabilis” in the Acta Eruditorum of September 1694 (Opera,
II, 608—612) dealing with elastic curves. Here he discusses the curve with equation
XX + y-y = aV(xx - yy), which curve “ of four dimensions ” has, as he says, a form “ jacentis
notae octonari oo, seu complicatae in nodum fasciae, sive lemnisci, d’un noeud de ruban
Gallis” (like a lying eightlike figure, folded in a knot of a bundle, or of a lemniscus, a knot
of a French ribbon), lemniskos being a knot in the form of an eight. The curve was soon
known as a lemniscate.

3 It was not yet customary to indicate the limits of the integral at the bottom and top of
the integral sign, so that the integrals for arcs CQ and QA look alike. Our modem notation

Ja is due to 4- Fourier; see his Theorie analytique de la chaleur (Didot, Paris, 1822), 237-
238.
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Take the ellipse ADFNA, of which the minor semiaxis is CF = a, and the

major semiaxis CD = aV2, and call z the indeterminate abscissa CH, with its

origin in the center C of the ellipse, and equal to the chord CQ of the lemniscate,

and draw the ordinate FII parallel to the major axis. Then it is already known
that the direct arc D1 of this ellipse has as its expression

and the inverse arc

Va2 + z
2

V

a

2 — z2

IF = arc. DF — arc. DI =
J

, V

a

2 + z
2

dz— •

Va2 — z2

Finally, take the equilateral hyperbola LMP with semiaxis SM = a [Fig. 2].

If we call t the indeterminate radius [applicata] SO, then it is known that if we
take the arc MO starting from the center M this arc is expressed as follows:

I’

t
2 dt

J yV — a4

Theorem I. Let the two equations written below be (1) and (2); then I say that if

we take the first of them, then also the other is valid:

(
1

)

Va2 + z2

t — a- - — — .

Va2 — z2

(
2

)

j' a2 dz _ V

a

2 + zz ^ j" t
2 dt zt

' Va4 - z4 J Va2 — az J V

t

4 — a4 a

The truth of this theorem can be shown by dilferentiation, and substituting

for t and dt their values in terms of z and dz taken from equation (1).

Corollary. If in the lemniscate the chord CQ = z, and in the ellipse the abscissa

CH is also = z, and in the equilateral hyperbola LMP the central radius

SO = t, and if we assign to t its value expressed in equation (1) and substitute

in equation (2) the arcs of the curves in terms of their expressions already indi-

cated in the statements above, we obtain
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Fagnano has in Theorem II another substitution which leads (see Figs. 1 and 2) to

arc. QA - arc. IF + arc. ML - - vV - z4
,

and then goes on to

Theorem III. If we consider equation (7) and equation (8) below, then I say that,

given the first one, the other also is valid:

(
7

)

(8 )

Va2 — z2

u = a —
'

Va2 + z2

a2 dz _ f a2 du

V

a

4 — z4 J Va* — u*

From these equations Fagnano again derives some expressions for the arc. Other pairs are

(
Opere

,
II, 304-309):

X
v l + 1r-H> ± dz dxV2

2
II

M1p—

1> Vl + X*

X
VI + z + dz dxV2
Vi ± z 1i-H> Vl + xi

(9 )

uV2 -±vr. bi1i-H>1 dz 2 du

VI - u4 z Vl - 24 1i-H>
1

(
12

)

VI - p = lvr-- Vl - z\
dz — 2 dt

tV2 z
bi1i-H> Vi - p

(
10

)

(13)

The last equations allow Fagnano to duplicate an arc of the lemniscate, and so to divide the

quadrant of the lemniscate into three equal parts; t — z then gives z = V — 3 + 2V3.
He also shows how to divide the quadrant into five equal parts.

Two more sets of equations show how to duplicate an arc of the lemniscate. Fagnano
concludes that he can divide the quadrant of the lemniscate therefore into 2 x 3”,3 x 2m

,

5 x 2m equal parts. And this is a new and singular property ofmy curve.”
Much later, Fagnano republished his papers in his Produzioni matematiche (Pesaro, 1750;

reprinted as vol. II of the Opere matematiche). When this book reached the Berlin Academy
in 1751, Euler, who was asked to express an opinion on it, quickly grasped the importance
of Fagnano’s transformations for the integration of a number of differential equations of a
particular kind, involving radicals. In his “ Observationes de comparatione arcuum cur-
varum ellipticarum,” Novi Commentarii Academiae Scientiarum Petropolitanae 6, 1756-57
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(1761), 58-84
(
Opera omnia, ser. I, vol. 20, 80-107), he took up, in his own way, Fagnano’s

investigations on the arcs of the ellipse, the hyperbola, and the lemniscate. In chapter I he
sets up formulas on sums and differences of the arcs of the ellipse, in chapter II of the hyper-

bola, then in chapter III he takes up analogous problems for the case of the lemniscate

(xx + yy)
2 = xx - yy.

Theorem 4. If, in the lemniscatic curve that we have described here [Fig. 3] we
draw a chord CM = z and another one besides which is

i

CN = u
II - zz

V 1 + zz’

then the arc CM is equal to the arc AN, or also: the arc CN is equal to the arc AM.

Fig. 3 0 A

The demonstration is like that of Fagnano in a similar case. In Corollary 1 Euler writes

CN = CAJ^~+
Cd ’

in Corollary 2 he chan8es « = Jy~ into z = Jl û
and

those expressions into uuzz + uu + zz = 1, “hence the points M and N can be inter-

changed, from which it follows that arc CM = arc AN as well as arc CN = arc AM.”

Corollary 3 states that, since CQ, the abscissa of N, is equal to uJ~~r— and QN, its
V Li

y j 'UK, uz—-— ,
therefore CQ = ——

,
QN = — and hence QN/CQ = z, and

AT = z = CM (AT is the tangent at ^4).

Corollary 6 points out that the point 0, which divides the whole quadrant CA into two
equal parts, also divides all arcs MN into two equal parts.

Theorem 5. If in a lemniscatic curve with axis CA = 1 we construct [Fig. 4]

one chord CM = z and another arc besides which is

CM2 = u
2zV 1 - z

4

1 + z4

then the arc CM2 subtended by this chord u is twice the arc subtended by chord CM.

Compare Fagnano’s case (7).
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The demonstration leads, via uu = -—-—-—-—- , through
1 + 2z4 + z8

8

v (1 — UU) = -

and

1—2zz — z
4

+ z4

to

1+2zz — z
4

V(1 + uu) = —i-

,,,_ 2dz(l-6z4 + z8
)

(1 + z4
)

2 V(1 - z4
)

V(1

du 2 dz

Vl - M4 Vl -

1 - 6z4 + z8

(1 + Z4
)

2

or, since arc CM = (—7===, arc CM 2 = f ,

j Vl - Z4 j Vl — M4

arc CM2 = 2 arc CM + const.;

but, since z = 0 gives u = 0, the constant is zero, so that

arc CM2 = 2 arc CM .

6

In Corollary 1 to Theorem 5 it is pointed out that, if

CN
+ zz

CN2 - 1 ~ 2zz ~ g4 _ A
1 + 2zz - z4 Vl

— uu

+ uu

then arc AN = arc CM, arc AN2 = arc CM2
,
arc ^4jV2 = 2 arc AN.

5 Compare Fagnano’s case (10), interchanging the letters u and z.
6 See C. L. Siegel, “Zur Vorgeschichte des Eulerschen Additionstheorems,” Sammelband

zu Ehren des 250. Oeburtstages Leonhard Eulers, ed. K. Schroder (Akademie Verlag Berlin
1959), 315-317.
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In Corollary 4 it is pointed out that when M and N2 coincide the arc CMNA is divided

into three equal parts. This leads to a fifth-degree equation,

(1 + z)(l — fiz + zz)(l + fiz + zz) = 0,

with
fj.
= 1 + V3, hence CM = 1 + V3 - V7

2V3
, CN 2V3

+ V3

Other corollaries give formulas for half a given arc and the fifth part of a quadrant; the

number of equal parts that can be computed is 2m (l + 2n
).

Theorem 6. If the chord of a simple arc CM is z and the chord of the n-fold arc

CM2 = u, then the chord of the (n + l)-fold arc is

CMn+1 =

/ 1 — uu /

1

W 1 + IHf"
1"

1 + ZZ

~ UZJ
(1 — uu){ 1 — zz)

(1 + uu)( 1 + zz)

In the paper “De integratione aequationis differentialis,” Novi Commentarii Academiae
Scientiarum Petropolitanae 6, 1756-57 (1761), 37-57 (Opera omnia, ser. I, 20, 58-79),

printed in front of the previous paper but written somewhat later, Euler returned, in his

own way, to the principle expressed in “Fagnano’s theorem,” and thereby clarified its

character. The full title of the paper reads in translation:

On the integration of the differential equation

m dx n dy

Vl - Vl -

comparing the case first with that of
m ^X = -

n^
, which leads to m sin

-1 x
Vl - x2 Vl - y

2

n sin
-1

y + C (Euler writes A sin for sin
-1

).

Theorem. I therefore say that of the differential equation

dx dy

Vl — xi Vl — y
i
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the complete integral equation is

xx + yy + ccxxyy = cc + 2xyV 1 — c
4

.

Demonstration. When we take this equation its differential will be

xdx + y dy + ccxy(x dy + y dx) = (x dy + y dx)V1 - c4
,

from which we obtain

dx[x + ccxyy - yV{ 1 - c4

)] + dy[y + ccxxy — xV (1 — c4
)]
= 0.

Solving the same equation we obtain

y - ~ c4
> + ~ *4

) and T ...
yV(T^) - cV(T~^)

1 + ccxx l -(- ccyy

If we now assign to the radical V(1 - z4
)
the sign + ,

we must assign to the

radical t/(l — y
4

)
the sign —

, so that the value x = 0 gives in both cases the
value y — c. Therefore we have

x + ccxyy - yV( 1 - c4
)
= -cV( 1 - «/

4
),

y + ccxxy - xV (1 - c4
)
= cV^l - z4

).

When we substitute these values in the differential equation, we obtain

-cdxV{ 1 - y*) + c dyV( 1 - a:
4

)
= 0,

or

dx dy

V(1 - z4
)

“ V^Ty*)'

The integral of this differential equation is therefore

xx + yy + ccxxyy = cc + 2xyV (1 — e4 ).

and, since it contains the arbitrary constant c, it is the complete integral
Q.E.D.

10. If, therefore, we have the equation

dx dy

va - *4 ) " vn -y4 )’
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then the complete value of the integral in x is

_ yV (1 — c4
)
+ cV (1 — y

4
)

1 + ccyy

which passes into x = y if the constant c vanishes, and if we place c = 1 we
obtain

x = + ^ ~ yi)
= 1

1 ~ yy
.

i + yy V i + yy’

which are both particular values already found above [in §9], From here we
obtain other particular values, but which lead to imaginaries. Thus if we take

c = 0 we obtain

x = >

y

and if we take cc = — 1 we obtain

lyy + 1

* yy - i

’

which also satisfy the equation in question.

19 EULER, LANDEN, LAGRANGE. THE METAPHYSICS OF THE
CALCULUS

Many eighteenth-century mathematicians tried to give a solid foundation to the calculus.

We present here three of these attempts. Euler, in his Institutiones calculi differentialis

(Saint Petersburg, 1755; Opera omnia, ser. I, vol. 10), gave his theory of the zeros of dif-

ferent orders, dx being, he said, equal to 0. John Landen (1719-1790), an English surveyor

and land agent, best remembered because of his contributions to the theory of elliptic

integrals, defined his derivative by the “residue”!"'^—

^

^—

—

1 , expanding /(x) in a
L X1 ~ x0 Jx 0 = :ei

power series in x (concentrating on the binomial theorem). We find this in the Discourse

concerning the residual analysis (London, 1758). A few years later, Lagrange, in his “Note
sur la metaphysique du calcul infinitesimal,” Miscellanea Taurinensia 2 (1760-61), reprinted

in Oeuvres, V (1877), 597-599, gave what he thought to be an improvement on Landen’s

“algebraic” method, basing his whole comprehensive reevaluation of the principles of the

calculus on the Taylor expansion. Lagrange later gave a full exposition in his Theorie des

fonctions analytiques (Paris, 1797), of which the second edition, revised (1813), is reprinted

in Oeuvres, IX (1881).

Euler’s method has long been rejected, often with a kind of shoulder shrugging indicating

that even the great Euler sometimes slept. A more appreciative note has recently been

struck by A. P. Juschkewitch, “Euler und Lagrange fiber die Grundlagen der Analysis,”
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Sammelband zu Ehren des 250. Oeburtstages Leonhard Eulers, ed. K. Schroder (Akademie
Verlag, Berlin, 1959).

Here follows a section of Euler’s text, from Opera omnia, ser. I, vol. X, 69-72.

(1) EULER

83.

This doctrine of the infinite, however, will be better explained when we
explain what the infinitely small of the mathematicians is. There is no doubt
that any quantity can be diminished until it vanishes and is transformed into
nothing. But an infinitely small quantity is nothing else but a vanishing quantity
and, therefore, actually will be = 0. This definition of the infinitely small is in
agreement with the other which states that it is smaller than any given quantity.
Indeed, if a quantity were so small that it is smaller than any given one, then it

certainly could not be anything else but zero; for if it were not = 0, then a
quantity equal to it could be shown, which is against the hypothesis. To those
v ho ask what the infinitely small quantity in mathematics is, we answer that it

is actually = 0. Hence there are not so many mysteries hidden in this concept
as there are usually believed to be. These supposed mysteries have rendered the
calculus of the infinitely small quite suspect to many people. Those doubts that
remain we shall thoroughly remove in the following pages, where we shall
explain this calculus.

84. In order to show that the infinitely small quantity is really zero we must
first meet the objection: why do we' not always characterize the infinitely small
quantities by the same sign 0, instead of using particular symbols to designate
them ? Since all zeros are equal among themselves, it seems superfluous to
discriminate among them by means of different signs. It is true that any two
zeros are equal in such a way that their difference is zero, yet, since there are
two methods of comparison, one arithmetic, the other geometric, we see this
difference between them (depending on the origin of the quantities to be com-
pared) : the arithmetic ratio of two arbitrary zeros is equality, but not the geo-
metric one. This can best be understood from the geometric proportion 2:1 =
0 :0, in which the fourth term = 0 as well as the third. It is in the nature of a
proportion that when the first term is twice the second, then the third term must
also be twice the fourth.

85. This, however, is also clear in ordinary arithmetic. It is known that a zero
multiplied by an arbitrary number gives zero and that n- 0 = 0 as well as n : 1 =
0 .0. From this it seems possible that two quantities, whatever their geometric
ratio may be, will always be equal if we look at them from the arithmetic point
of view. Hence if two zeros can have an arbitrary ratio, then I judge that dif-

ferent signs should be applied, especially when we have to consider a geometric
ratio of different zeros. The calculus of the infinitely small is therefore nothing
but the investigation of the geometric ratio of different infinitely small quan-
tities. This enterprise will be thrown into the greatest confusion unless we use
different signs to indicate these infinitely small quantities. No other method can
be efficient.
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86. Hence, if we introduce into the infinitesimal calculus a symbolism in

which we denote by dx an infinitely small quantity, then dx = 0 as well as

a dx = 0 (a an arbitrary finite quantity). Notwithstanding this, the geometric

ratio a dx .dx will be finite, namely, a A, and this is the reason that these two

infinitely small quantities dx and a dx (though both = 0) cannot be confused

with each other when their ratio is investigated. Similarly, when different

infinitely small quantities dx and dy occur, their ratio is not fixed though each

of them = 0. And in an investigation of a ratio of two such infinitely small

quantities we need all the power of the differential calculus. The use of this

comparison, though at first sight it looks quite small, will more and more be

appreciated and will then shine forth in the open.

87. When, therefore, the infinitely small is indeed nothing, it is clear that a

finite quantity neither increases nor decreases, if an infinitely small quantity is

either added to it or subtracted from it. Let a be a finite quantity and dx be

infinitely small, then a + dx as well as a — dx and a + n dx in general = a.

Then whether we take for a ± n dx and a an arithmetic or a geometric relation,

in both cases we obtain equality. Indeed, the arithmetic ratio of equality is

obvious, since, as n dx = 0, we have

a + n dx — a = 0.

This clearly gives the geometric ratio of equality, which is

a ± n dx _
a

From this follows the rule, accepted by most people, that infinitely small

quantities vanish in comparison with finite ones, and thus can be rejected in so far

as those finite quantities are concerned.

The objection that the analysis of the infinites neglects mathematical rigor

disappears therefore automatically, since nothing else is rejected but what is

nothing at all. Hence we can in good right affirm that in this exalted science we
can maintain the highest mathematical rigor as well as we find it in the ancient

books.

88. Since an infinitely small quantity dx is indeed = 0, its square dx2
,
cube

dx3
,
and any other power with positive exponent will also be = 0, and they will

therefore equally vanish when compared with finite quantities. And so will also

an infinitely small quantity dx2 vanish when compared with dx, because

dx + dx2 stands to dx in the ratio of equality, whether the comparison is carried

out in an arithmetic or a geometric way. There is no doubt about the former; as

to geometric comparison, we obtain

[dx + dx2
) : dx = —X- ~7 = 1 + dx = 1.

doc

We shall equally find that dx + dx3 = dx and in general that dx + dxn
~ 1 =

dx, provided n is greater than zero, for the geometric ratio will be

(dx + dxn + 1 ):dx = 1 + dxn
,
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and this ratio will be that of equality since dxn = 0. If, therefore, as is customary
with powers, we call dx infinitely small of the first order, dx2 of the second order,
dx3 of the third order, and so on, then it is manifest that the infinitely small of
higher order will vanish with those of the first order.

Now comes a section of Landen’s text (with notation slightly modernized).

(2) LANDEN

In the application of the Residual Analysis, a geometrical or physical problem
is naturally reduced to another purely algebraical; and the solution is then
readily obtained, without any supposition of motion, and without considering
quantities as composed of infinitely small particles.

It is by means of the following theorem, viz.

rj^jnlTi yjTnln

= %0nln) - 1

X — V

(where m and n are any integers), that we are enabled to perform all the principal
operations in our said Analysis; and I am not a little surprized, that a theorem
so obvious, and of such vast use, should so long escape the notice of algebraists

!

I have no objection against the truth of the method of fluxions, being fully

satisfied, that even a problem purely algebraical may be very clearly resolved
by that method, by bringing into consideration lines, and their generation by
motion. But I must own, I am inclined to think, such a problem would be more
naturally resolved by pure algebra, without any such consideration of lines and
motion.—Suppose it required to investigate the binomial theorem; i.e., to
expand (1 + x)mln into a series of terms of x, and known coefficients. To do this

by the method of fluxions, we first assume

(1 + x)mln = 1 + ax + bx2 + cx3 + dx* &c.

We, to proceed with perspicuity, are next to conceive x, and each term of that
assumed equation, to be denoted by some line, and that line to be described by
the motion of a point: Then, supposing x to be the volocity of the point describ-
ing the line x, and taking, by the rules taught by those who have treated of the
said method, the several contemporary velocities of the other describing points,
or the fluxions of the several terms in the said equation, we get

7YI— X (1 + x) <-mln) ~ 1 X X = ax + 2bxx + 3cx2x + 4dx3x &c.
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because, when the space described by a motion is always equal to the sum of the

spaces described in the same time by any other motions, the velocity of the first

motion is always equal to the sum of the velocities of the other motions.

From which last equation, by dividing by x, or supposing x equal to unity,

we have

— x (1 + xYmln) 1 = a + 2bx + 3cx2 + 4:dx
3 &c.

n

Consequently, multiplying by 1 + x, we have

x (1 + *)"
. m m m, „ m „

or its equal | ax -I bx2
H cx3

n n n n
&c.

= a + &c.

From whence, by comparing the homologous terms, the coefficients a, b, c, &c.

will be found.

The same theorem is investigated by the Residual Analysis, in the following

manner.

Assuming, as above,

(1 + x)mln = 1 + ax + bx2 + cx3 &c.

we have

(1 + y)
mln = 1 + ay + by2 + cy3 &c.

and, by subtraction,

(1 + x)mln — (1 + y)
mln = a- (x — y) + b-(x2 — y

2
) + c-(x3 — y

3
) + d-(xi — y

4
)

&c.

If, now, we divide by the residual x — y, we shall get

(1 + z) <m,n) ,
1 + X ^ \l + x) _U + x)

'

/I + y\
mln

(1 + «A
2m/n

,

/I + y\
3mln

\l + x)
+

\1 + x)
+

\l + x)

a + b(x + y) + c-(x2 + xy + y
2
) + d (x3 + x2

y + xy2 + y
3
)

&c.

which equation must hold true let y be what it will: From whence, by taking

y equal to x, we find, as before,

— x (1 + xYmln) 1 = a + 2bx + 3cx2 + 4dx3 &c.
n

The rest of the operation will therefore be as above specified.
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Now, as to either of these methods of investigation, I shall not take upon me
to say any thing in particular; it is submitted to the reader to compare one with
the other, and judge which of the two is most natural.

Finally, we present a section from Lagrange’s Theorie des fonctions analytiques, from
Oeuvfes, X, 20ff. He opens his book with a definition of function, primitive function, and
derivative function.

(3) LAGRANGE
We define as a function of one or several quantities any mathematical expression
in which those quantities appear in any manner, linked or not with some other
quantities that are regarded as having given and constant values, whereas the
quantities of the function may take all possible values. Thus in a function we
consider only the quantities which are supposed to be variables without regard
to the constants it may contain.

The term function was used by the first analysts in order to denote in general
the powers of a given quantity. Since then the meaning of this term has been
extended to any quantity formed in any manner from any other quantity.
Leibniz and the Bernoullis were the first to use it in this general sense, which is

nowadays the accepted one. 1

Let us assign to the variable of a function some increment by adding to this
variable an arbitrary quantity; we can, if the function is algebraic, expand it in
terms of the powers of this quantity by using the familiar rules of algebra. The
first term of the expansion will be the given function, which will be called the
primitive function; the following terms will be formed of various functions of
the same variable multiplied by the successive powers of the arbitrary quantity.
These new functions will depend only on the primitive function from which they
are derived and may be called the derivative functions. Generally speaking,
whether the primitive function is algebraic or not, it can always be expanded in
the same manner, and in this way it will give rise to the derivative functions.
The functions considered from this point of view lead to an analysis superior to
the ordinary one because of its generality and of its numerous applications and
we shall see in this work that the analysis that is commonly called transcendental
or infinitesimal is, in fact, not different from that of the primitive and derivative
functions, and that the differential and integral calculus is also, properly speak-
ing, nothing else but the calculus of those very same functions.

Lagrange then criticizes the foundation of the calculus by Newton and others on infini-
tesimals based on motion, with which, he says, even Maclaurin had difficulty. He praises the

1 Seo Selection V.16.
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approach of “a capable English mathematician ” (Landen) although it is cumbersome. Then
Lagrange gives his own method:

Now let us consider a function /(x) of a variable x. If we replace x by x + i,

i being any arbitrary quantity, it will become /(x + i) and, by the theory of

series, we can expand it in a series of the form

f(x) + pi + qi2 + ri3 + • •
•

,

in which the quantities p,q,r,..., the coefficients of the powers of i, will be new
functions of x, which are derived from the primitive function of x, and are

independent of the quantity i.

But, in order to prove what we claim, we shall examine the actual form of the

series representing the expansion of a function / (
x

)
when we substitute x + i

for x, which involves only positive integral powers of i.

This assumption is indeed fulfilled in the cases of various known functions;

but nobody, to my knowledge, has tried to prove it a priori—which seems to me
to be all the more necessary since there are particular cases in which it is not

satisfied. On the other hand, the differential calculus makes definite use of this

assumption, and the exceptional cases are precisely those in which objections

have been made to the calculus.

I will first prove that in the series arising by the expansion of the function

f(x + i) no fractional power of i can occur except for particular values of x.

After having accomplished this, Lagrange continues in Chapter II, entitled “Derived
functions, their notation and algorithm,” as follows:

We have seen that the expansion off(x + i) generates various other functions

p, q, r, . .
.

,

all of them derived from the original function/ (x), and we have given

the method for finding these functions in particular cases. But in order to

establish a theory concerning these kinds of functions we must look for the

general law of their derivation.

For this purpose, let us take once more the general formula f(x + i) =
/ (*) + pi + qi2 + ri3 +

,

and let us suppose that the undetermined quan-

tity x is replaced by x + o, o being any arbitrary quantity independent of i.

Then /(x + i) will become f(x + i + o), and it is clear that we shall obtain the

same result by simply substituting i + o for i in f(x + i). The result must also

be the same whether we replace the quantity i by i + o or x by x + o in the

expansion f(x).
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The first substitution yields

f(x) + p(i + o) + q(i + o)
2 + r(i + o)

3 +

,

or, expanding the powers of i + o and writing out for the sake of simplicity no
more than the first two terms of each power (since the comparison of these terms
will be sufficient for our purpose):

f(x) + pi + qi2 + ri
3 + si* + • + po + 2qio + 3ri2o + 4si3o + • • •

.

In order to carry out the other substitution, we note that we obtain f(x)
+ / (

x)° + •
•

, p + p'o +
, q + q'o + •

,
r + r'o 4- • • • when we replace

x by x + o in the functions f(x), p, q, r,

.

. . , respectively; here we retain in the
expansion only the terms that include the first power of o. It is clear that the
same expression will become f{x) + pi + qi2 + ri3 + si* + + f'(x)o + p'io

+ q'i
2o + r'i3o + • •

.

Since these two results must be identical whatever the values of i and o may
be, comparison of the terms involving o, io, i

2
o, .... will give:

V = /'(*), 2q = p', 3r = q
'
, 4s = r' , . .

.

Now it is clear that in the same way that f'(x) is the first derived function of

f(x), p' is the first derived function of p, q' the first derived function of q. r' the
first derived function of r, and so on. Therefore, if, for the sake of greater sim-
plicity and uniformity, we denote by /'(*) the first derived function of f(x),
by f "(x

)
the first derived function of f’(x), by /" the first derived function of

f"(x), and so on, we have

p = f'(x), and hence v' =/"(*);

consequently

II'cwl<NII hence
r'®’

ii

consequently

r
_?'_/"(*)

hence
3 2-3 2-3

consequently

r' _ f»(x)

4 2-3-4’
hence - fV(x)

2-3-4’

and so on.
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Then by substituting these values in the expansion of the function f(x + i),

we obtain

/(* + <)=/(*) +/'(*)< + f-^i2
+^i3 +

This new expression has the advantage of showing how the terms of the series

depend on each other and above all how we can form all the derived functions
involved in the series provided that we know how to form the first derived
function of any primitive function.

We shall call the function f(x) the 'primitive function with respect to the
functions f(x), f"(x), . . . that are derived from it; these functions are called the
derived functions with respect to the former one. Moreover, we shall call the first

derived function f(x) the first function, the second derived function the second
function, the third derived function the third function, and so on. In the same
way, if y is supposed to be a function of x, we denote its derived function by
V > y" t y

m
> •

> respectively, so that, y being the primitive function, y' will be its

first function, y" its secondfunction, y'" its third function, and so on.

Consequently, if x is replaced by x + i, y will become

, .
y"i2 y'"i

3

y + yi + ~2- + 'h +

Thus, provided that we have a method of computing the first function of any
primitive function, we can obtain, by merely repeating the same operation, all

the derived functions, and consequently all the terms of the series that result

from expanding the primitive function.

linally, only a little knowledge of the dilferential calculus is necessary
to recognize that the derived functions y'

,

y"
,

y'"
. . . of a; coincide with the

expressions

dy d2
y d3

y
dx' d^’ d&’

rCSpeCtlVely -

Lagrange then continues with examples of functions and their derivatives.

The reader interested in this discussion of the foundations of the calculus should further
consult C. B. Boyer, The history of the calculus (Dover, New York, 1959). On Lagrange see
also Judith V. Grabiner, “The calculus as algebra, J. L. Lagrange, 1733-1813,” dissertation,

Harvard University, 1966.

20 JOHANN AND JAKOB BERNOULLI. THE BRACHYSTOCHRONE

Johann Bernoulli, Acta Eruditorum 6 (June 1696), 269 (Opera omnia, I, 161), challenged the
learned world to solve the following “problema novum”:
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“Let two points A and B be given in a vertical plane. To find the curve that a point M,
moving on a path AMB, must follow such that, starting from A, it reaches B in the shortest

time under its own gravity.”

The interesting thing was, he added, that this curve is not a straight line, but a curve well

known to geometers.

After another, more explicit explanation of the problem, published at Groningen in

January 1697 (Opera omnia, I, 166-169), he then gave the solution himself in the Acta

Eruditorum of May 1697, pp. 206-211 (Opera omnia, I, 187-193), under a title beginning

“Curvatura radii in diaphanis non uniformibus” (The curvature of a ray in nonuniform
media). He showed that the required curve, which he called a brachystochrone, is a

cycloid. In the same issue, pp. 211-217, was also published the solution of his older brother

Jakob: “Solutio problematum fraternorum . . . una cum propositione reciproca aliorum ”

(Solution of problems of my brother . . . together with the proposition of others in turn;

Opera, I, 768-778). We present both papers, from which we can see that the one by Jakob
contains a general principle, namely, that a curve which constitutes a maximum or a mini-

mum as a whole must also possess this property in the infinitesimal. Johann’s paper also

contains a general principle, that of the parallel between (geometric) optics and (point)

mechanics, which would lead to the work of W. R. Hamilton in the 1830’s. In the same Acta

Eruditorum of 1697 are also contributions to the same problem by Leibniz, L’Hopital,

Tschirnhaus, and Newton. All except L’Hopital find the cycloid as the solution.

These papers open the history of a new field, the calculus of variations. The papers of the

Bernoullis exist in a German translation by P. Stackel, Ostwald’s Klassiker, No. 46 (Engel-

mann, Leipzig, 1894).

(1) THE SOLUTION OF JOHANN BERNOULLI

The curvature of a ray in nonuniform media, and the solution of the problem tofind

the brachystochrone, that is, the curve on which a heavy point falls from a given posi-

tion to another given position in the shortest time, as well as on the construction

of the synchrone or the wave of the rays.

.

.We have a just admiration for Huygens, because he was the first to dis-

cover that a heavy point on an ordinary Cycloid falls in the same time [tauto-

chronos], whatever the position from which the motion begins. 1 But the reader

will be greatly amazed [an non obstupescus plane], when I say that exactly this

Cycloid, or Tautochrone of Huygens, is our required Brachystochrone. I reached

this understanding in two ways, one indirect and one direct. When I pursued the

first, I discovered a wondrous agreement between the curved path of a light ray

in a continuously varying medium and our Brachystochrone. I also found other

rather mysterious things [in quibus nescio quid arcani subest
]
which might be

useful in dioptric investigations. It is therefore true, as I claimed when I proposed

1 Huygens, Horologium oscillatorium (Paris, 1673), Proposition XXV: In a cycloid with
vertical axis and with its vertex down, the times of descent in which a mobile particle, start-

ing from rest at an arbitrary point of the curve, reaches the lowest point are equal among
themselves, and have to the time of the vertical fall along the total axis of the cycloid a ratio

equal to that of the semicircumference of a circle to its diameter. Oeuvres completes, XVIII
(1934), 185. See Selection IV. 18.
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the problem, that it is not just naked speculation, but also very useful for other

branches of knowledge, namely, for dioptrics. But in order to confirm my words
by the deed, let me here give the first mode of proof!

Fermat, in a letter to De la Chambre, 2 has shown that a light ray passing from

a thin to a more dense medium, is bent toward the perpendicular in such a way
that, under the supposition that the ray moves continuously from the light to the

illuminated point, it follows the path that requires the shortest time. With the aid

of these principles he showed that the sine of the angle of incidence and the

sine of the angle of refraction are in inverse proportion to the densities of the

media, hence directly as the velocities with which the light ray penetrates these

media. Later Leibniz, in the Acta Eruditorum, 1682, pp. 185 sequ., and soon
afterward the famous Huygens in his Treatise on light, p. 40, 3 have demon-
strated this more comprehensively and, by most valid arguments, have estab-

lished the physical, or better the metaphysical, principle which Fermat seems
to have abandoned at the insistence of Clerselier, remaining satisfied with his

geometric proof and giving up his rights all too lightly.

Now we shall consider a medium that is not homogeneously dense, but con-

sists of purely parallel horizontally superimposed layers, of which each consists

of diaphanous matter of a certain density decreasing or increasing according to

a certain law. It is then manifest that a ray which we consider as a particle will

not be propagated in a straight line, but in a curved path. This has already been
considered by Huygens in his above-mentioned Treatise on Light, but he did

not determine the nature of this minimizing curve such that the particle, whose
velocity increases and decreases depending on the density of the medium, will

pass from point to point in the shortest time. We know that the sines of the

angles of refraction at the separate points are to each other inversely as

the densities ofthe media or directly as the velocities of the particles, so that the

brachystochrone curve has the property that the sines of its angles of inclination

with respect to the vertical are everywhere proportional to the velocities. But
now we see immediately that the brachystochrone is the curve that a light ray
would follow on its way through a medium whose density is inversely pro-

portional to the velocity that a heavy body acquires during its fall. Indeed,

whether the increase of the velocity depends on the constitution of a more or

less resisting medium, or whether we forget about the medium and suppose that

the acceleration is generated by another cause according to the same law as that

of gravity, in both cases the curve is traversed in the shortest time. Who pro-

hibits us from replacing the one by the other ?

In this way we can solve the problem for an arbitrary law of acceleration,

since it is reduced to the determination of the path of a light ray through a

medium of arbitrarily varying density. Hence let FGD [Fig. 1] be the medium
bounded by the horizontal line FG on which the luminous point A is situated.

2 Fermat’s letters to Martin Cureau de la Chambre are of 1657 and 1662 (
Oeuvres

,

II, 354-359, 457-463). The law of refraction was published by Descartes in his Dioptrique
(1637). Fermat first opposed it, but then reestablished it by a maximum-minimum
principle.

3 Huygens, Traite de la lumikre (Leiden, 1690), 40; Oeuvres completes, XIX (1737), 489. On
Leibniz, see Selection V.l, note 13, p. 279.
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FA G

Let the curve AHE, with vertical axis AD, be given, its ordinates HC deter-

mining the densities of the medium at altitude AC or the velocities of the light

rays or particles at M

.

Let the curved line of the light ray, which we wish to

determine, be ABM. Let us write for AC, x; for CH, t; for CM, y; and for the

differentials Cc, dx; diff. mn = dy\ diff. Mm = dz, finally, let a be an arbitrary

constant. Then Mm is the total sine, mn the sine of the angle of refraction or

the angle of inclination of the curve with respect to the vertical. As we have

said before, the ratio of mn to CH is constant, hence

so that

or

dy.t = dz:a,

a dy = t dz,

aa dy2 = tt dz2 = tt dx2 + tt dy2
.

This gives a general differential equation for the required curve ABM:

dy = tdx:V(aa — tt).

In this way I have solved at one stroke two important problems—an optical

and a mechanical one—and have achieved more than I have demanded from

others: I have shown that the two problems, taken from entirely separate fields

of mathematics, have the same character.

Now let us take a special case, namely the common hypothesis first introduced

by Galilei, who proved that the velocities of falling bodies are to each other as

the square roots [in ratione subduplicata

\

of the altitudes traversed—then this

is really the given problem. Under this assumption the given curve AHE is a

parabola tt = ax, hence t = Vax. If this value is substituted in the original

equation, we obtain

dy = dx

J

—-—

>

J V a — x

from which I conclude that the Brachystochrone is the ordinary Cycloid. For

when the circle GLK of radius a rolls on AG and the rolling starts at A, the point

K describes a cycloid, of which the differential equation is exactly

if AC = x, CM = y.
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Bernoulli then shows this analytically by writing

1 a dx

2 Vax — x2

1 a dx — 2x dx

2 Vax — x2

which integrated gives

CM = arc GL — LO,

from which, since MO = CO — arc GL + LO = arc LK + LO, it follows that ML =
arc LK}
To solve the problem completely he then shows that from a given point as vertex a cycloid

can be described that passes through a second given point.

Before I end I must voice once more the admiration that I feel for the un-
expected identity of Huygens’ tautochrone and my brachystochrone. I consider
it especially remarkable that this coincidence can take place only under the
hypothesis of Galilei, so that we even obtain from this a proof of its correctness.
Nature always tends to act in the simplest way, and so it here lets one curve
serve two different functions, while under any other hypothesis we should need
two curves, one for tautochronic oscillations, the other for the most rapid fall.

If, for example, the velocities were as the altitudes, then both curves would be
algebraic, the one a circle, the other one a straight line.

5

Bernoulli then introduces the synchrony, the curve PB [Fig. 2] in a vertical plane such
that a heavy body falling from A along this curve reaches the points B in the same time as
a heavy body falling on the cycloid AB. Referring to Huygens, he concludes that PR is

4 This gives the equation of the cycloid in the form

x —
2
^ ~ cos *)’ V =

2 ^
~ s*n Oi t = tt — <p, arc LK = a<p.

The differential equation can already be found in Leibniz’s first paper on the integral
calculus of 1686 (see Selection V.2).

6 The cases mentioned are t = ax and t = ax113
.
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also a cycloid intersecting all cycloids with initial point A at a right angle. He ends by
suggesting that other orthogonal trajectories of given families of curves be found. 6

(2) THE SOLUTION OF JAKOB BERNOULLI

Bernoulli begins by saying that, though he did not care for his brother’s challenge, he

tackled his problem at the invitation of Leibniz and solved it in a few weeks, finding what
he calls the oligochrone. Then he begins with the following:

Lemma. Let ACEDB [Fig. 3] be the desired curve along which a heavy point

falls from A to B in the shortest time, and let C and D be two points on it as

close together as we like. Then the segment of arc CED is among all segments of

arc with C and D as end points the segment that a heavy point falling from A
traverses in the shortest time. Indeed, if another segment of arc CFD were

traversed in a shorter time, then the point would move along AGFDB in a

shorter time than along ACEDB, which is contrary to our supposition.

Hence in a plane arbitrarily inclined to the horizon (the plane need not be

horizontal), take ACB [Fig. 4] as the required curve, on which a heavy point

from A reaches B in a shorter time than on any other curve in this plane. Take
on it two points C and D infinitesimally close together and draw the horizontal

line AH, the vertical CH, and DF normal to it. Take E halfway between C and
F and complete the parallelogram DE by means of the line El. On El we now
must determine a point G such that the time of fall through CG + the time of

fall through GD is a minimum. I denote this by

tea + ^od >

7

we have to keep in mind that the fall begins at the altitude of A. If we now take

on the line El another point L [Fig. 4a] such that GL is incomparably small as

compared to EG, and if we draw CL and DL, then, according to the nature of

a minimum

:

td + tLD — tCG + tGD

6 Johann Bernoulli does not yet use the term “orthogonal trajectories.” The concept
played an important role in the work of Leibniz and Bernoulli in those days. The connection
with Huygens’s theory of light was clear. The term “trajectory” dates from an article by
Johann Bernoulli in the Acta Eruditorum of 1698 (Opera omnia, I, 266).

7 We write tca instead of Bernoulli’s ICG.
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CE:CG = tCE :tCG ,

CE :CL = tCE : tCL ,

hence

CE:(CG - CL) = tCE :(tCG - tCL ).

If we take a point M on CG such that CG - CL = MG, then we have, because
of the similarity of the triangles MLG and CEO,

CE .GL = EG x tCE :CG x (tCG — tCL ).

In the same way we find, according to the nature of the fall of heavy bodies,

EF-.GD = tEF :tGD

EG : LD = tEF : tLD ,

hence

EF:(LD - GD) = tEF :(tLD - tGD).

If we take on DL the point N such that LD — GD = LN, then we have, because
of the similarity of the triangles LNG and GID,

LN-.LG = GI-.GD,

hence

EF .LG = GJ x tBF :GD x
(
tLD — tGD).

Bernoulli uses no parentheses.



398
|

V NEWTON, LEIBNIZ, AND THEIR SCHOOL

By comparison we obtain

EG x tCE :CG x
(
tCG - tCL)

= GI x tEF :GD x
(
tLD - tGD )

= CG:GD,

and by permutation

EG x tCE :GI x tEF = CG x («CG - tCL):GD x (iiD - <GD )
= CG:GD,

because there is a minimum.

But according to the law of gravity we have

EG x tCE : GI x tEF
EG GI

Vhg Whe’

and therefore finally:

EG GI

Vhc'Vhe
CG-.GD.

By the way, please let Mr. Nieuwentyt take notice of the use of second dif-

ferentials [differentio-differentiales\, which he wrongly neglects .

9 Indeed, we were

forced to suppose that the part GL of the infinitesimally small segments EG, GI
is infinitesimally small with respect to them, and I fail to see how without it a

solution of the problem can be obtained.

Now EG and GI are elements of the abscissa All, CG and GD are elements of

the curve, HC and HE their ordinates, and CE and EF elements of the ordinate.

The problem can therefore be reduced to the purely geometric one of determin-

ing the curve of which the line elements are directly proportional to the

elements of the abscissa and indirectly proportional to the square roots of the

ordinates. I find that this property belongs to the Isochrone of Huygens, which

therefore is also the Oligochrone, namely the cycloid, well known to the

geometers.

Bernoulli gives a geometric proof, but we can readily verify that the equation ds =
a dx/Vy, if All = x, HC = y, leads to the same equation

dy

J

—-— = dx
* a - y

that Johann Bernoulli arrived at. Jakob then shows, like Johann, how to find a cycloid with

horizontal base AH passing through the given points A and B.

On Bernard Nieuwentijt see Selection V.l.
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Bernoulli then indicates some other problems that can be solved by his method. They
are:

(1) To find on which of the infinitely many cycloids (or circles, parabolas, etc.) passing
through A with the same base All a heavy point can fall from A to the vertical line ZB in
the shortest time.

(2) To find the path of a particle moving in a medium of varying density, which curve is

the same as the refraction curve studied by Huygens and himself.

(3) To find isoperimetric figures of different kinds; 10 he especially challenges his brother
Johann to solve the following problem: Among all isoperimetric figures on the common
base BN [Fig. 5], to find the curve BFN which—though not having itself the largest area—
is such that this property belongs to another curve BZN of which the ordinate PZ is pro-
portional to a power or a root of the segment PF or the arc BF. Johann will get 50 ducats
from a gentleman known to Jakob if he solves this problem before the end of the year.

21 EULER. THE CALCULUS OE VARIATIONS

After having mastered the methods that the Bernoullis had developed in the study of iso-
perimetric problems, Euler began to develop his own approach shortly before 1732. Where
the Bernoullis had only solved specific problems, Euler began to look for a general theory.
This theory, which began to take shape after 1740, appeared finally in the majestic volume
entitled Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive
solutio problematis isoperimetrici latissimo sensu accepti (A method for discovering curved
fines having a maximum or minimum property or the solution of the isoperimetric problem
taken in its widest sense; Lausanne, Geneva, 1744; Opera omnia, ser. I, vol. 25, 1952). The
book consists of six chapters with two appendices. It does not yet present the calculus of
variations in the form in which we know it—that was Lagrange’s work, the importance of
which Euler immediately understood when it appeared. Euler’s method still has a geometric
character, but Euler understood its nonessential nature: in chap. I, §32, he remarks: “It is

thus possible to reduce problems of the theory of curves to problems belonging to pure
analysis. And conversely, every problem of this kind proposed in pure analysis can be con-
sidered and solved as a problem of the theory of curves.” Euler, however, preferred to deal
with such problems in a geometric way, because by this means the method is “wonderfully

between 200 B.c. and a.d. 100. Some of his theorems can be found in Pappus’ “Collection.”
See T. L. Heath, A manual of Greek mathematics (Clarendon Press, Oxford, 1931), 382-383.
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aided and brought nearer to the intellect” (mirifice adiuvetur atque intellectu facilis red-

datur).

Chapter I deals mainly with the type of questions that occur in the calculus of variations

(the term calculus variationum does not appear in the book, being first employed by Euler
in a paper of 1760 (1766), to indicate Lagrange’s algorithm which uses 8x, 8y). Euler makes
a difference between absolute and relative maxima and minima. In Chapter II we begin to
meet the many special problems that give the book its charm. In chapter III he discusses

the case in which certain other indetermined quantities occur under the integral. Chapter
IV contains more special problems, chapter V discusses the relative method, and chapter VI
gives more problems. The first appendix deals with elastic curves. The book abounds in

examples.

The book was republished as ser. I, vol. 25 of the Opera omnia with a 55-page German in-

troduction by C. Caratheodory (containing a classification of Euler’s examples). There exist

a partial German translation by P. Stackel in Ostwald’s Klassiker, No. 46 (Engelmann,
Leipzig, 1894) and a complete Russian translation (Moscow and Leningrad, 1934).

We begin with a section of chapter I.

Hypothesis I. The abscissa is denoted by x, the ordinate [applicata] by y\
further, dy = p dx, dp = q dx, dq = r dx, dr = s dx, and so on. The integral

under consideration is
j
Z dx, where Z must be such that Z dx cannot be inte-

grated; Z can be a function [functio] not only of x and y, but also of p, q, r, . . .

.

Then the principle, which Jakob Bernoulli had established, is announced in

Proposition II. Theorem. If amz [Fig. 1] is a curve in which the value of the

formula
J
Z dx is a maximum or a minimum, and Z is an algebraic or a deter-

mined function of x, y, p, q, r, . .
.

,

then every portion rnn of this curve has the

special property that, if it is referred to the abscissa MN, the value of
[
Z dx is

also a maximum or minimum.

Fig. 1

The proof follows essentially the reasoning of Jakob Bernoulli (see Selection V.20(2)).

One of the corollaries points out that the reasoning does not hold when in Z there appear
indeterminate integrals, as

[ y dx. Then follows
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Proposition III. Theorem. If amz is a curve, corresponding to the abscissa

AZ

,

for which
J
Z dx is a maximum or a minimum, while Z contains indefinite

integral expressions, then the property of a maximum or a minimum does not

hold for any arbitrary part of the curve, but belongs to the whole curve cor-

responding to the abscissa AZ.

After the proof of this theorem, and certain corollaries, comes

Hypothesis II. When the abscissa AZ [Fig. 2] of a curve is divided into in-

numerable infinitely small elements IK, KL, LM, . .
.

,

all equal to one another,

and some portion AM is denoted by X, to which some variable function F

corresponds, then we shall denote the values of the function F for the following

points of the abscissa N, 0, P, Q, and for the preceding points L, K, I, H, . .

.

by F', F", F'\ . .

.

for N, 0, P, . .
.

,

and F., F„, F,„, ... for L, K, I, ...

.

Thus

we can indicate in an easy way, without prolix writing of differentials, the value

of a subscript prime variable function at any point of the abscissa.

There follow five corollaries, which express the following identities:

F' = F + dF,

F" = F' + dF',

Fm = F" + dF",

F = F, + dF,,

F, = F„ + dF„,

F„ = F„ + dF,„,

and so forth, and, when the ordinates Mm, Nn, Oo,

and LI, Kk, Ii, . .

.

by y,, y„, ym , . . . then, since p =

Pp,..

.

are indicated by y, y'
,
y", y

m
, . .

.

dy _ Nn — Mm
dx dx

y' — y ,
y" — y' „ y

m — y" y
iv — y'"

v =
~lhr' P = —r~’ P =—XT-' P = y y

dx dx

y - V’ V’ - V"
Pl =

~~dx~’ V" = ~ p~ =dx

dx

y~ - y»

dx
etc.
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dp _ p' — p y" - 2y' + y
dx2dx dx

- y
m - 3y" + 3y' - y

> etc.

Corollaries VI-VIII. If
j
Z dx is referred to the abscissa AM = x, then the

value corresponding to the next element MN = dx is Z dx. In a similar way we
shall indicate the values of

J
Z dx belonging to the elements MN, MO, OP,

by Z dx, Z dx, Z dx , .... Then if the expression
J
Z dx is referred to the

abscissa AM = x, the value belonging to the abscissa AZ is

until we arrive at point Z.

When therefore we must find the curve for which, for the given abscissa, the
value of

J
Z dz is the largest or smallest, we must obtain a maximum or minimum

of this expression
J
Z dx + Z dx + Z' dx + Z" dx + etc.

Proposition IV. Theorem. When the expression |" Z dx has a maximum or
minimum for the curve amnoz [Fig. 2] referred to the given abscissa AZ, and
we conceive another curve amvoz which differs from the first one only by an
infinitely small amount, then the value of

J
Z dz is the same for both curves.

After demonstration and several corollaries there follows

Definition V. The differential value of a given expression for a maximum or
minimum is the difference of the values which this expression receives on the
required curve and on the curve that results from it by an infinitely small
change.

One of the corollaries points out that for a maximum or minimum of f Z dx the differential
value vanishes.

CHAPTER II

Proposition I. Problem. When in a curve amz [Fig. 2] some ordinate Nn is

augmented by an infinitely small segment nv, then we must find the increase or
decrease of the separate quantities determined by the curve.
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To obtain the solution all quantities depending on y' are changed; the others remain fixed.

For instance, p = (y' — y)\dx increases by the particle nv/dx, and p' =
(
y " — y')/dx de-

creases by the particle nv/dx. Reasoning in a similar way, we find the following table of

quantities that change

:

Quantity: y'

Change: +nv +

P

nv

dx

P

nv

i>

nv

dx dx

q q r„

2nv nv nv

dx dx dx3

r,

3nv

r

3nv

dx3 dx

nv

dx3

Among the corollaries we find one stating that from the changes in the primary quantities

all the changes in the quantities that are composed of them can be found. These changes

can in a sense be considered their differentials. From the ordinary differential of, say,

y'V(1 + p2
), which is dy'V (1 + p

2
) + y'p dp/V (1 + p2

), we can therefore find as the

change of the function

+nvV(1 + p2
) +

y'pnv

dxV(1 + p
2

)

Proposition II. Problem. When Z is a determined function of x and y alone,

to find the curve az for which the value of the expression
j
Z dx is a maximum

or minimum.

When dz = M dx + N dy, the required curve is given by N dxnv = 0, or N = 0.

Among the corollaries is the case in which Z is a function of z only, when all curves having

the same axis are all solutions. When Z as a function of x and y is algebraic, the solution is

algebraic. A maximum or minimum may also occur when N = oo. Several examples follow;

one is to find the curve for which for all curves corresponding to the same abscissa

j
{ax — yy)y dx = 0 has a maximum or minimum. Answer: ax — 3yy = 0. Euler then

discusses whether this is a maximum or a minimum, and finds the value of the integral.

Proposition III. Problem. When Z is a determined function of x, y, and p, so

that

dZ = M dx + N dy + P dp,

to find among all curves corresponding to the same abscissa the curve for which

|

Z dx is a maximum or minimum.

Solution. Let amz be the required curve, and imagine the ordinate Nn = y'

augmented by a particle nv. Then the differential value of the expression
J
Z dx,

or of the equivalent expression Z dx + Z' dx + Z" dx + etc., together with

Z, dx + Z„ dx + Z„ dx + etc., must be = 0. We obtain the differential value
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of the whole quantity
J
Z dz, resulting from the translation of the point n to v,

when we look for the differential values of the separate terms, insofar as they
have been affected by the translation, and combine them into a sum. But as a
result of the translation of the point n to v only those terms are changed that
contain the quantities y '

, p., and p', hence only the terms Z dx and Z' dx; since
just as Z depends on x as well as on y and p, so Z' is a function of y' and p'

.

We
must therefore differentiate those members, and substitute in their differentials
for dy', dp, and dp' the above-mentioned values + nv, +nv/dx

, and -nv/dx.
But just as dZ = M dx + N dy + P dp, so dZ' = M' dx + N’ dy' + P' dp'.
The differential value of Z is therefore P(nv/dx), that of Z' is equal to N'-nv
- P' nv'/dx, and that of Z dx + Z' dx, hence also of the whole expression
\Zdx, is equal to nv(P + N' dx - P'). But P' - P = dP and for N' we
may write N

,

so that the differential value will be = nv-(N dx - dP). And since
we obtain the equation of the required curve by equating the differential value
of the expression

j
Z dx to zero, we obtain 0 = N dx - dP or N - dP/dx = 0,

which equation expresses the nature of the required curve. Which is what we
have to find. Q.E.I.

Corollaries point out that N - dP/dx = 0 is always a differential equation of the second
order

[
gradus ], unless there is no p in P. There are therefore two constants, so that two

points on the curve may be prescribed. A number of special cases are discussed. The co-
ordinates ^jmdj/may be interchanged. Among the examples we find nos. 33, 34, 36, 38:
Z = V(1 + pp), y = a + nx (the straight line as shortest distance between two points);

„ V(i + pp)

Vx
’

Zdy y dy3 2

dx2 + dy2 ’

x -l— _L
2 \4pi

pp

the cycloid; 1

from which the curve can be constructed, using logarithms (Euler writes Ip for our logp),
Z = (xx + yy)

nV( 1 + pp), many cases, depending on n\ for example, n = J gives

x2 — y
2 = 2kxy + C.

1 This is the brachystochrone; see Selection V.20.
2 This is the problem found in Newton’s Principia, Book II, Sect. 7, Prop 34 Scholium-

to find the shape of a volume of rotation moving in a fluid with uniform velocity parallel to
its axis under a pressure perpendicular to the surface and proportional to the square of the
velocity in the direction of the normal to this surface. Newton without proof gave the
differential equation in a geometric form; proofs were given in the Acta Eruditorum 5 (1697)
« (1699) and 11 (1699) by N. Fatio de Duillier, L’Hopital, and Johann Bernoulli. The“e”tlal equation is y dx dy3 = ads 3

-, see Johann Bernoulli, Opera omnia (Geneva, 1744),
oU /—

o

1 o.
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Corollary III, Art. 39, finishes with the remark:

From this we obtain the following rule for the solution of problems in which

the curve with a maximum or minimum of
j
Z dz is desired, where

dZ = M dx + N dy + P dp:

differentiate Z, place zero instead of M dx in the differentials M dx + N dy

+ P dp, keep N dy unchanged, and write —p dP instead of P dp. Then in this

way we obtain N dy — y dP = 0, an equation which because of dy = p dx

passes exactly into N - dP/dx = 0, which is the one we have already found. A
method free from a geometric solution is therefore desired, from which it will

be clear that in such an investigation of maxima and minima instead of P dp

we must write —pdP. 3

Proposition IV. Problem. When Z is a function of x, y, p, and q, so that

dZ = M dx + N dy + P dp + Q dq,

to find among all curves corresponding to the same abscissa the curve for which

J
Z dz is a maximum or minimum.

The solution, by a reasoning along the same lines as in Prop. Ill, but now using

dy' = +nv, dp' 31-3II dq' = nv

dx2
’

dy = 0, dp ii dq =
2nv

~dtf’

©II^3 dp, = o, dq, =
nv

dx2
’

leads to

nv-dx
dx dx dx2 dx2 dx2

)

nv-dx

nv-dx
( dx dx2 )

so that the required equation is

N _dP dJQ
dx

+
dx2

This is the paragraph to which Lagrange refers; see Selection V.22, p. 407.
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Again many special cases and examples are given. Example II is: To find the curve Am
[Fig. 3] wich with its evolute AR and the radius of curvature wR at every point has the
smallest area ARm. The answer is a cycloid. In Proposition V Euler derives for the case
dZ — M dx + N dy + P dp + Q dq + R dr + <S ds + T dt + • the condition

0 = A- — +^ +— d*8 d5T
dx dx2 dx3 +

dx4 dx5

In later chapters we find problems that belong to the isoperimetric type. For instance,
chapter V, 41 solves the problem:

To find among all curves of the same length, connecting the points a and a [Fig. 4], the
curve that encloses the largest or smallest area aAZz. Answer: the circle. Similarly, chapter
Y, 45: To find among all curves enclosing the same area aAZz the curve that by rotation
about the axis AZ gives the surface of smallest area. Answer: a curve of the third order,
belonging to type 68 of Newton, 9b(x - c)

2 = (2b - y)
2
(2y - 6)

4

The first appendix exists in an English translation by W. A. Oldfather, C. A. Ellis, and
D. M. Brown, “Leonhard Euler’s elastic curves,” Isis 20 (1933), 72-160; there is a German
translation by H. Linsenbarth in Ostwald’s Klassiker, No. 175 (Engelmann, Leipzig, 1910).
The second appendix contains Euler’s first publication of the principle of least action.

22 LAGRANGE. THE CALCULUS OF VARIATIONS

Lagrange had already studied Euler’s papers when he was in his teens, and Euler’s book of
1744 in particular. As a young professor at the Artillery School in Turin he began to corre-
spond with Euler on this subject as early as 1755, when he was 21 years of age. Euler

1 Enumeratio linearum tertii ordinis (1706); see Selection III. 8.



LAGRANGE. THE CALCULUS OF VARIATIONS 22
|

407

encouraged him, and the first results of Lagrange’s work were published in the “Essai
d une nouvelle methode pour determiner les maxima et les minima des formules integrates
indefinies (Attempt at a new method for determining the maxima and minima of indefi-

nite integral formulas), Miscellanea Taurinensia 2 (1760-61, 173-195; Oeuvres, I (1867),
355-362). Lagrange s aim was to present the ‘calculus of variations” in a purely analytic
form. A German translation by P. Stackel can be found in Ostwald’s Klassiker, No. 47
(Engelmann, Leipzig, 1894). We give here the principal part of his paper.

The first problem of this kind solved by the geometers is that of the Brachysto-
chrone, or line of most rapid descent, which Mr. Jean Bernoulli proposed toward
the end of the last century. It was solved only for particular cases, and it was not
until some time later, on the occasion of the investigations on Isoperimetrics,

that the great geometer whom we mentioned and his illustrious brother Mr.
Jacques Bernoulli gave some general rules for solving several other problems of
the same kind. But since these rules were not general enough, all these investiga-
tions were reduced by the famous Mr. Euler to a general method, in a work
entitled Methodus inveniendi. . ., an original work which everywhere radiates a
deep knowledge of the calculus. But, however ingenious and fertile his method
may be, we must recognize that it does not have all the simplicity that might be
desired in a subject of pure analysis. The author has made us aware of this in
Article 39 of Chapter II of his book, by the words, “A method free from a
geometric solution is therefore required. . .

”

Now here is a method that demands only a very simple application of the
principles of the differential and integral calculus, but first of all I must warn
you that, since this method demands that the same quantities vary in two
different manners, I have, in order not to confuse these variations, introduced
into my calculations a new characteristic 8. Thus 8Z will express a difference of
Z that will not be the same as dZ, but that nevertheless, will be formed by
means of the same rules; so that when we have an equation dZ = m dx we
might just as well have 8Z = m8x, and other expressions in the same way.

This being settled, I come first to the following problem.

I

Problem I. Given an indefinite integral expression represented by
J
Z, where

Z indicates a given arbitrary function of the variables x, y, z and their
differentials [differences] dx, dy, dz, d2

x, d2
y, d2

z, . .
.

,

to find the relation among
these variables so that the formula

J
Z become a maximum or a minimum.

Solution. According to the known method de maximis et minimis we shall

have to differentiate the proposed
j
Z, and, regarding the quantities x, y, z, dx,

dy, dz, d2
x, d 2

y, d 2
z, ... as variables, make the resulting differential [dif-

ferentielle] equal to zero. When, therefore, we indicate these variations by 8, we
shall have first, for the equation of the maximum or minimum,
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or, what is equivalent to it,

Now, let Z be such that

'/ 8Z =

8Z = n8x + p8 dx + q8 d 2x + r8 d3x + • • •

+ N8y + P8 dy + Q8 d2
y + R8 d3

y + • •

+ v8z + n8 dz + y8 d 2
z + p8 d 3z + •

•

;

then we obtain from it the equation

J
n8x + ^p8 dx + ^q8 d2x + j'rS d3x + • •

+ J
N8y + J

P8 dy +
J
Q8 d2

y +
J
R8 d 3

y +

+ j" v8z + J
tt8 dx + j"xS d2z +

J
p8 d 3z + • • • =0,

but it is easily understood that

8 dx = d8x, 8 d2x = d 28x,

and the others in the same way; moreover, we find by the method of integration

by parts,

j"p d8x = p8x —
J
dp8x,

J
q d

28x = q d8x — dq8x + J
d2q8x,

J
r d38x = r d28x — dr d8x + d2r8x —

J
d3z8x,

and the others in a similar way. The preceding equation will therefore be changed
into the following:

J
(w — dp + d2

q — d 3r + )8x

+ j
(N - dP + d2Q - d 3R + )8y

+
J

(v — dn + d 2
x — d 3

p + )8z

(A)

+ (p — dq + d 2r - )8x + (q — dr +

)

d8x

+ (r —

)

d 28x + ••

+ (P - dQ + d2R )8y + (Q - dR + •

)
d8y

+ (R - ) d 2
8y + ••

— dp + )
d8z

+ (p
—

)

d28z + =0,

+ (n - dx + d 2
p
— )8z + (x
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from which we obtain first the indefinite equation

(n — dp + d 2
q — d 3r + • )8x

(B) + (N - dP + d2Q - d3R + )Sy -

+ {v — dn + d 2
x — d 3

p + • •
• )8z = 0,

and then the determinate equation

(p — dq + d 2r — )8x + (q — dr + • •
•

)
dSx

+ {r — • •
•

)
dz8x + • • •

(C) + (P - dQ + d 2R )8y + (Q - dR + • • ) dhy

+ (R )d 2
8y + ...

+ (
7t — dx + d 2

p
— .

- )8z + (x
— dp + ) d8z

+ (p
— ) d28z + • • - =0.

This equation refers to the last part of the integral
j
Z; but we must observe

that, since each of its terms, such as p8x, depends on an integration by parts of

the formula
J p d8x, we may add to or subtract from it a constant quantity. The

condition by which this constant must be determined is that p8x must vanish

at the point where the integral
J p d8x begins; we must therefore take away

from p8x its value at this point. From this we obtain the following rule. Let us

express the first part of equation (C) generally by M, and let the value ofM at

the point where the integral
J
Z begins be indicated by 'M, and at the point

where this integral ends, by M'\ then we have M' - 'M = 0 for the complete
expression of equation (C). Now, in order to free the equations obtained from
the undetermined differentials 8x, 8y, 8z, d8x, d8y, . .

.

,

we must first examine
whether, by the nature of the problem, there exists some given relation among
them, and then, having reduced them to the smallest number possible, we must
equate to zero the coefficient of each of those that remain. If they are absolutely

independent of each other, then equation (B) will give us immediately the three

following

:

n — dp + d2
q — d3r + = 0,

N - dP + d2Q - d3R + = 0,

v — dv + d 2
x — d 3

p + • • • = 0 .

Next follows the example
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which is the brachystochrone in empty space and leads (a) to the result that the curve is

plane, and (6) to dt = Y x dx
/
\ c x. The case of the brachystochrone on a surface is also

discussed; here the relation 82 = p8x 4- q8y has to be taken into consideration. Lagrange
takes the cases in which the end points are fixed, as well as those in which they are subjected
to certain other conditions. This, says Lagrange, makes his method more general than that
of Euler, since Euler keeps the end points fixed; moreover, he lets only y vary in Z.

Problem II. To make the expression
f
Z a maximum or minimum, under the

supposition that Z is an arbitrary algebraic function of the variables x, y, z with
their differences dx, dy, dz, d2

x, d2
y, . . . and of the quantity II = j

Z', Z' being
another arbitrary algebraic function of the variables x, y, z, . .

.

and their dif-

ferentials dx, dy, dz, d 2
x, d2

y, . . . alone.

Solution. Let us have, by differentiating with respect to 8,

8Z = L8n + n8x + p8 dx + q8 d2x + • • •

+ N8y + P8 d2
y + Q8 d2

y + • •

+ v8z + n8 dz + ^8 d 2z + •

and

8Z' = n'8x + p'8 dx + q'8 d 2x + •

+ N'8y + P'8 dy + Q'8 d2
y +

+ v’8z + tt’8 dz + %’S d 2z + • • •

then we shall have, by hypothesis,

hence

The first section can be reduced, as in Problem I, to

J
(re - dp + d2

q )8x + (p - dq + • )8x + (q ) d8x + • •
•

.

As to the second one, we shall transform it into

(n'8x + p'8 dx + q'8 d 2x + )-
^ j

L x
(
n’8x + p'8 dx + q'8 d2x)
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Now let the total value of the integral
J
L be represented by H. If we take this

quantity H as a constant, then the preceding transformed equation will be

reduced to this one:

/[(
H -

l
L
)

[n bx + p'6 dx +

which can easily be transformed by partial integration into

• 8a;

J ~j L)~ dP'(H ~
f
L) + d\'(H - JiW

+ Jzj ]d&r + ---

If, therefore, we write, for short,

• • • Sa;

and equally

and so forth, as well as

n + n'(H - j\bj = (n),

p + p’(h -
j\
L

^J

= (P)>

q + q'(H-
j\

= (?)>

N + N’(h -
Jj&)

= (N),

&)
= (P),

Q + Q'(h -
J\&)

= (Q)>

V + v'^H —
|

.L) = (v),

7T + Tt'^H —
|

.L
)

= w*

X + X\
H ~

j
JL
J
= (x)>
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we shall have, in general,

8
j
Z =

J[(
w

)
~ d(P) + d 2

{q) ]&»

+ Jpo -d{P) + d2
(Q) ]8y

+ [
[M - d(it) + d2

(x )
- • •

- ]8z

+ [(*>) - d(q) + ---]8x - [(q

)

]8dx + ...

+ [(P) - d(Q) + • • ] 8y - [(Q) ]S dy + •

+ [M - d(x) — • • -]8z - [(x)
- • • -]S dz

= 0 ,

an equation reduced to the form of equation (A) of the preceding problem,
hence, etc.

In a corollary this method is applied to the case in which Z' contains another indefinite

integral function II' = J
Z".

Problem III. To find the equation of the maximum or the minimum of the
formula

J
Z, if Z is simply given by a differential equation that does not contain

other differentials of Z than the first.

This is the case in which we can write

S dZ + T8Z = n8x + p8 dx + •
• + N8y + P8 dy + + v8z + n8 dz,

which is then solved as a linear differential equation in 8Z, taking 8 dZ = d8Z.
There are two appendices. In the first we find (a) the problem of the surface of least area

among all surfaces with the same given perimeter:

which leads to the condition that both p dx + qdy and ^ ^ ^x

Vl + p
2 + q

2
have to be exact
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differentials, 1 and
(
b

)

the problem of the surface of least area among all surfaces of equal

volume

:

j j
z dx dyj = 0 ,

8^ J j
dx dyV 1 + p

2 + = 0 ,

which leads to the condition that both p dx + q dy and p dy — qdx

Vl +
+ kx dy (k an

p

‘

+ q
arbitrary coefficient) must be exact differentials. This is verified for the sphere.

In the second appendix we find the problem of the polygon of largest area among all

polygons of the same given number of sides. It is shown that this polygon is inscribed in a

circle, a theorem proved geometrically by Cramer (Histoire de VAcademie Royale, Berlin,

1752). If only the sum of the sides is given, the polygon is regular.

Lagrange’s paper was followed in the same number of the Miscellanea Taurinensis, pp.

196-298, by a longer one: “Application de differents problemes de dynamique”
(
Oeuvres

,

I,

365-468).

These investigations of Euler and Lagrange on the calculus of variations were supple-

mented by Legendre in a paper in the Histoire de VAcademie Royale, Paris, 1786 (1788),

7-37, in which he studied the second variation. A German translation appears in the same
volume 47 of Ostwald’s Klasskiker in which we find Euler’s and Lagrange’s research.

23 MONGE. THE TWO CURVATURES OF A CURVED SURFACE

Where Lagrange can be called the first great mathematician who was an analyst (hence, by
his own philosophy, an algebraist), Gaspard Monge (1746-1818) can be called the first

geometer. He first taught at the military academy in Mezieres near Sedan, after which he
went to Paris, where he played a leading political role in the Revolution, and helped in

founding the ICcole Polytechnique (1795), of which he became the leading spirit until his

dismissal by the Bourbons in 1815. It was primarily through his teaching that descriptive

geometry, analytical geometry, and differential geometry were established as special fields.

Of his Geometrie descriptive (Paris, 1795) there exists an English extract by J. F. Heather
(Lockwood, London, 1809; Weale, London, 1851). His lessons in differential geometry were
first published in Feuilles d’analyse appliquee a la geometrie a l’usage de VHcole Polytechnique

(Paris, 1795), later elaborated in Application de Valgebre a la geometrie (5th ed.; Bachelier,

Paris, 1850). The following selection is from Feuille XV, almost equivalent with chap. XV,
pp. 124-139, of the 1850 edition, entitled “Des deux courbures d’une surface courbe.” In

previous Feuilles Monge had discussed conical surfaces, surfaces of revolution, canal sur-

faces, developable surfaces, and other surfaces, using that combination of differential

calculus and geometrical reasoning typical of his way of thinking. On Monge see R. Taton,

L’Oeuvre scientifique de Monge (Presses Universitaires, Paris, 1951).

We begin with a part of Section I of the paper.

1 Two examples of these “minimal surfaces,” the catenoid and the right helicoid, were
found by Jean-Baptiste Meusnier, a pupil of Monge’s, in the Memoires des savants strangers de
VAcademie 10 (Paris, 1785). He also interpreted here Lagrange’s analytic condition geo-
metrically as indicating that the mean curvature is zero. The catenoid had already appeared
in chap. V, 44 of Euler’s Methodus inveniendi, but not as a minimal surface.
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If we represent by x, y, z the coordinates of an arbitrary point of a curved
surface, and by x'

,
y'

,
z' those of the surface of a sphere, then the equation of the

sphere that will have its center at the point of the curved surface, and for its

radius the quantity R, will be

(A) (* - *')

2

+ (y - y'Y + (2 - z ') 2 = r2
.

We have seen 1 that when x'
,
y'

,
z' are regarded as constants in this equation,

and if we differentiate it successively regarding first x, then y as sole variables,
the two equations obtained

(B)

(C)

x - x' + (z - z')p = 0
,

y - y' + (2 - z')q = o ,

2

are, in x
, y , z those of the two normal planes to the curved surface passing

through the point under consideration on the surface. They are perpendicular,
the one to the xz-plane, the other to the yz-plane. Hence, these two equations
are those of the two projections of the normal to the curved surface passing
through the same point of the surface. In these two equations x'

,
y', z' are the

variables of the normal, and the five quantities x, y, z, p, q, which belong to the
point of the surface through which passes the normal, are constants for the same
normal, and vary in value when we pass from one normal to another.

If, from the first point of the surface under consideration, we pass in a certain
direction to another point at an infinitesimal distance, then the five quantities
x

> y, 2, p, q will increase by their respective differentials dx, dy, dz, dp, dq and
among these five differentials exist the following three equations:

dr — p dx + q dy, dp = rdx + sdy, dq = s dx + t dy, 3

and the value of the quantity dyjdx will determine, in the plane of the x, y, the
projection of the direction along which we pass from the first point to the
second.

This being established, if we conceive through the second point a new normal
to the curved surface, and if this normal is in the same plane as the first and
hence intersects it somewhere at a point, then this point of intersection will be
that of the first normal for which the three coordinates x', y', z' do not change

1 In chap. I (p. 5 of the 1850 ed.), where Monge discusses tangent planes and normals to
curved surfaces /(x, y, z) = 0.

2 On p. 48, Monge introduces the now common notation p = dz/dx, q = dz/dy for the
partial derivatives of z with respect to x and y. The notation dz/dx appears in the nineteenth
century, at the suggestion of Jacobi in his theory of determinants

(Crelle’a Journal fur die
reine und angew. Mathem. 22 (1841),3 19, and received for a long time only a gradual accept-
ance. It seems to have first been proposed by Legendre, Histoire de VAcademie Rouale
Paris, 1786 (1788), p. 8.

3 On p. 71 Monge introduces r;s, t as the partial derivatives of the second order, which he
calls differences partielles du second ordre.
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when x and y change their values. Hence, if we differentiate equations (B) and

(C), regarding x', y'
,
z' as constants, we obtain

dx + p
2 dx + pq dy + (z — z')(r dx + s dy) = 0,

dy + pqdx + q
2 dy + (z — z')(s dx + t dy) = 0.

Eliminating first dy/dx and then (z — z'), we obtain two equations equivalent

to the two preceding ones:

(D) (z - z')
2
(rt - s2

) + (z - z')[(l + q
2
)r - 2pqs + (1 + p

2
)t]

+ 1 + p
2 + q

2 = 0,

(E)
iS [(1 + q2)s ~ pqt] +

d

£ [{1 + q2)r - {1 + p2w
— (1 + p2

)s + pqr = 0.

The four equations (B), (C), (D), (E) will belong to the point of intersection of

the two consecutive normals. However, the first three of these equations suffice

to determine the three coordinates x ’

,
y’

,

z' of this point. The fourth equation

(E), which does not contain any of the coordinates, is therefore a condition that

has to be satisfied, and that, by determining the value of dy\dx, indicates the

direction according to which we must pass from the first point of the surface to

the second, so that the new normal would be in the same plane as the first one,

and would have a point in common with it.

II

Since equation (E) is of the second algebraic degree with respect to dy/dx, and

provides two values for this quantity, it follows that, having drawn a normal

through an arbitrary point of a curved surface, we can always pass on the surface

in two different directions from this point to another, at an infinitely small

distance, for which the normal is in the same plane as the first. These two direc-

tions are, in general, the only ones for which this result can occur, so that, except

in the very particular case for which equation (E) is always satisfied whatever

the value of dy/dx may be, if we pass from the first point to the second along

any other direction, the new normal will not be in the same plane with the first,

and will have no point in common with it.

The two directions in question have between them a very remarkable prop-

erty, and that is that they are at right angles. Indeed, whatever may be the

surface on which we operate, and whatever be the point of this surface that we

consider, we can always suppose that the three rectangular planes of projection,

whose position was first arbitrary, are chosen in such a way that the tangent

plane to the surface at this point is parallel to the xy-plane. The quantities

p, q, under this assumption are both equal to zero, and equation (E) becomes

dx2
dy /r - t\

dx\s )

- 1 = 0 .
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Now, if we represent by m and m' the two values of dy/dx which this equation
provides, then we shall have

mm' + 1=0;

hence the projections of the two directions on the xy-plane are at right angles.
But these directions themselves, since they are in the tangent plane, are parallel
to their projections, hence they are also at right angles .

4

Ill

Equation (D) being also of the second algebraic degree, with respect to z — 2',

it is clear that the three equations (B), (C), (D) give two values for each of the
quantities x

, y , 2 , and that these double values will be those that correspond
respectively to the two points of intersection of the first normal with the two
other normals that are in the same plane with it.

Operating on each of these points of intersection in particular, and to begin
with on the first of them, then, if we think of the sphere whose center is at this
point and whose surface passes through the point of the curved surface, it is

evident that the two normals to the curved surface, which intersect at the center,
will also be normals to the sphere. The curved surface and that of the sphere
will therefore have two consecutive normals in common, and consequently, will
have two consecutive tangent planes in common; they will thus have the same
curvature in the direction of the plane that passes through the two normals, that
is to say, in the direction determined by the corresponding value of dy/dx, and
the center of this curvature will be nothing else but the point where the two
normals meet, hence the center of the sphere itself.

the same way Monge finds a second sphere corresponding to the other value of dy/dx.

Hence, every curved surface has at every one of its points two curvatures
whose directions are in two normal planes perpendicular to one another, and
whose centers are on the same normal.

The three quantities x, y, 2 being the coordinates of the point of the surface,
and the other three x '

, y '
,
2' being the coordinates of the center of curvature, it

is evident that the distance of these two points, that is to say, the value of the

4 These directions were first discovered, in a rather complicated way, by Euler, “Re-
cherches sur la courbure des surfaces,” Hist. Acad. Roy. des Sciences, Berlin (1760; publ.
1767), 119-143, Opera omnia, ser. I, vol. 28 (1955), 1-22; he asked for the maximum and
minimum values of the normal curvature of plane sections through the normal at a point of
the surface. Monge introduced them in his “Memoire sur la theorie des deblais et des
remblais,” Histoire de I’Academie Royale, Paris, 1781 (1784), 666-704, where he investigates
the developable surfaces formed by congruences of straight lines. This approach is directly
related to that of our Selection from the Feuilles.
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radius of curvature, is nothing else but the quantity R of equation (A). Hence,

if between the four equations (A), (B), (C), (D) the three quantities x — x'

,

y — y'
,
z — z' are eliminated, then we shall have an equation of the second

degree which will give, in p, q, r, s, t, the two values of R, hence those of the two

radii of curvature.

If we write for short

g — rt s2
,

h = (1 + q
2
)r — 2pqs + (1 + p

2
)t,

Jc
2 = 1 + p

2 + q
2

,

then the result of this elimination is

gR2 + hkR + Jc
2 = 0,

from which it follows that the expression for the two radii of curvature is

(F) R = £-[-h + Vh2 - 4 lc
2
g] = t

~ 2P
V h + Vh2 - 4k2g

IV

Since every normal to a curved surface always meets two other infinitely close

normals placed in two normal places perpendicular to each other, let us imagine

that from the normal at the first point of the surface we pass to one of the two

infinitely close normals that intersect it, that subsequently we pass from this

second normal, in the same sense, to the one that intersects it, that from this

third one we pass, in the same sense, to the one that intersects this one, and so

on along the whole extent of the surface. It is evident that we shall pass through

a developable surface which will everywhere be perpendicular to the curved

surface, and which will intersect it in a curved line whose elements will all be

directed along one of the curvatures of the surface; this curve will thus be a line

of the first curvature. Performing the same operation, and in the same sense,

for all other points of the surface, we shall have the family [la suite
]
of all the

lines of the first curvature, which will divide the curved surface into zones of

variable width.

In the same way Monge derives the lines of the second curvature, each perpendicular to

all those of the first curvature, and conversely.

These two families of curves will divide the curved surface into elements that

can be regarded as rectangular. [As examples we get the meridians and parallels

on a surface of revolution.]
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We have seen that equation (E) expresses the relation that must exist between
dyjdx and the five quantities p, q, r, s, t, so that two consecutive normals inter-
sect; it is therefore the equation of the projection of the line of curvature on the
zy-plane. If we thus have differentiated twice the given equation of the curved
surface to obtain in x, y the values ofp, q, r, s, t, and if we substitute these values
into (E), then we shall have an ordinary differential equation in x, y, dyjdx,
which will be that of the lines of curvature. But this equation is of the second
degree with respect to dyjdx, and hence, when we shall have integrated it and
completed it with an arbitrary constant, which we shall represent by A, this
constant will be of the second degree, and the integral will be in general of the
form

A

2

+ Ag(x, y) + f(x, y) = 0,
5

in which the two functions g, f will be given by the integration.

Monge then shows how to find the A for the specific lines of curvature passing through a
point x = a, y = b on the surface.

If in the equation (E) of the lines of curvature we substitute for r, t their values
taken from dp = r dx + s dy,dq = s dx + tdy, the quantity s disappears at the
same time, and, with the aid of dz = p dx + q dy, this equation takes the form

(
E

) dp{dy + qdz) = dq{dx + p dz),

under which we shall see that it often presents itself.

In Section V Monge discusses the developables formed by the normals to the surface, and
in Section VI the surfaces formed by the edges of regression of these developables, hencL the
locus of the centers of principal curvature of the surface, consisting of two sheets. One of
his results is as follows:

If, on the sheet of the centers of one of the curvatures, we consider any one of
the edges of regression of which it is the locus, then this edge will be, between
any two of its points, the shortest line that can be drawn on the sheet. Indeed,

5 Monge uses two differently shaped /’s, which we replace by g and /.
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the osculating plane of this edge, 6 that is to say, the plane that passes through

two of its consecutive tangents, is tangent to the developable surface to which

the edge belongs, and which is the locus of its tangents; it is therefore tangent

to the sheet of the centers of the other curvature, and consequently normal to the

first sheet at the point of osculation. But the line whose osculating plane is

normal to the surface at the point of osculation is the shortest that can be

traced, on this surface, between any two of its points, or, what amounts to the

same, it is the line that would be traced by a thread extended between these

two points.

This relation is then explained by a mechanical consideration.

In the next Feuille, No. XVI, Monge applies his theory to the determination of the lines

of curvature of the ellipsoid. At present we usually determine these lines with the aid of

Dupin’s theorem on triply orthogonal systems, published by Monge’s pupil Charles Dupin

in Developpements de geometrie (Courcier, Paris, 1813), 239.

6 The term osculation was introduced by Leibniz in his “Meditatio nova de natura anguli

contactus et osculi” (New meditation on the nature of the angle of contact and of kiss),

Acta Eruditorum (June 1686), 289-292 (Mathematische Schriften, Abth. 2, Band III, 326—

329), where he introduced the circle of osculation. A weakness in his characterization was
corrected by Jakob Bernoulli, Acta Eruditorum (March 1692), 110-118 (Opera, I, 473-481),

who also advanced the terminology: “Quod si omnes intersectiones quibus alias datae
curvae se mutuo secare possunt, in unum punctum confluant, oritur coitus, qui est con-

summatissimus earum congressus ...” Then, in 1694, he found the formula for the radius

of curvature, ds3 :dx d dy; see Selection IV. 15 (Huygens), note 6. The name “osculating

plane” (planum osculans) of a curve appears first in Johann Bernoulli, Opera omnia, IV,

113, 115, but the plane itself had already been introduced in the work done by Leibniz and
the Bernoullis on geodesic lines on surfaces (Acta Eruditorum, 1697, 1698).
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absciss (a), 272, 308, 309, 367
Abu Kamil, 58

Acta Eruditorum, 271
Adam, C., 90, 253
addition, 4, 8; logical, 125

addition theorem, 380
Adelard of Bath, 1

adequate, 220
adjunct, 242
Adrastus, 77
affirmative, 94

Agnesi, M. G., III. 9, 178
Agnesi, M. T., 178

Agostini, A., 222, 231

Alexander the Great, 218
algebra (name), 1, 55
alegbraist, 413
algorithm (name), 1

Al-KashI, Al-KasI, 7, 21

Al-Kharlci, 58
Al-Khayyami, O., 58
Al-Khwarizml, M., 1, 50, II.

1

alogos, 95
Al-Ma’mun, 55
Analyse des infiniment petits,

312, Y.8
analysis, 74, 244; situs, 123, 183
Analysis per aequationes, 284,

285, 347
Analyst, The, 299
analyst, 413
angle: hornlike, 299; of contact,

297, 298, 299
annulus, 195

antinomy, 231

Antiphon, 195

antithesis, 80
Apian, P., 21

Apollonius, 74, 90, 133, 143, 146,

147, 149, 164, 167, 220, 222,

228, 231

apotome, 65, 67
apple, 192, 197 ;

of discord, 232
applicata, 148, 400
appliqu^e, 183, 313
Arabic numerals, 4

arc: elliptic, 375, 376, 378, 379;

hyperbolic, 375, 376, 379;

lemniscatic, 376-381
;

rectifi-

able, 375

Archibald, R. C., 3, 47, 270
Archimedes, 29, 133, 148, 188,

193, 195, 204, 214, 219, 222,

225, 226, 227, 230, 235, 280,

369

Aristhaeus, 145

Aristotle, 134, 137, 138, 188,

198, 199, 202

Arithmetica infinitorum, 111,

IV.13, 284

Arithmetica universalis, 91, 94,

110

Ars magna, II. 3, II.4, 92

Artis analyticas Praxis, 90
Astronomia nova, 192, 194, 287

asymptotes, III. 8, 179, etc.

atoms, 202
At-TusI, 138

Auchter, H., 328

Auger, L., 232

baby pens, 4

Bachet, C., 26, 27, 28
Bachmacova, I., 108

Bachmann, P., 27

Barrow, I., IV. 14, 253, 270, 281,

284, 306, 338
Beaune, F. de, 253, 279, 280

Beghinselen der Weegconst, 189

Berkeley, G., 299, V.12, 333,

334, 338
Bernoulli, Daniel, V.16, 361

Bernoulli, Jakob, 180, 183, 269,

270, 271, 312, 317, V.9, 375,

376, 392, V.20, 399, 400, 407,

419
Bernoulli, Johann, 31, 99, 180,

183, 270, 271, 309, 312, 313,

316, 317, 321, V.10, 351, 367,

368, 375, 376, 391, 392, V.20,

399, 404, 407, 419

Bernoulli numbers, 317

Bernoulli, theorem of, 317

biais, 162

Bierens De Haan, D., 81

Billy, J. de, 29, 30

binomial (Euclid), 65, 67

binomial coefficients, 21, 26

binomial expansion, 214, 291,

329, 386
binomial series, V.4

Boethius, A. M. T. S., 133, 193

Bolzano, B., 115

Bombelli, R., 63, 93, 111, 222

Boncampagni, B., 2, 60

Bortolotti, E., 63, 219, 231, 253

Bosmans, H., 81, 86, 190, 192,

214, 219, 244
Bosse, A., 162

Bougainville, L. A. de, 178

Boutroux, P., 21, 163, 239, 241

Bouvelles, C., 232

bowl, 203
Boyer, C., 134, 188, 208, 232,

280, 313, 391

brachystochrone, V.20, 404, 407

Bradwardine, T., 134

421
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Brahe, T., 192

Braikenridge, W., 168

branch, 159

branches, hyperbolic, parabolic,

170, 171, 172, 174

bridges of Konigsberg, III. 11

Briggs, H., 12, 280
brin, 158

Brouillon project, 158, 161, 163
Brouncker, W., Ill

Brown, D. M., 406
Brunschwicg, L., 21, 163, 239,

241

Burgi, J., 12

Bullialdus, I., 320
Burkhardt, H., 352
Burnside, W. S., 98, 103, 183
Busard, H. L. L., 134, 136, 320

Cajori, F., 2, 62, 93, 119, 144,

292, 299, 300, 301, 334, 338
calculatio, 134

calculatores, 134, 135
calculus: differentialis, 222, 271,

V.l, 281, 335, 342; of frac-

tions, 4; integralis, 271, V.2;
metaphysics of, V.19; sum-
matorius, 271; universalis,

124; of variations, 312, 392,
V.21, V.22

calendar, Gregorian, 93; Julian,
93

Camestris, 190
Campanus, J., 133
Cantor, G., 198
Cantor, M., 2, 4, 62, 375
Carcavy, P. de, 168
Caratheodory, C., 400
Cardan (Cardanus), H., 1.3, 1.4,

62, 90, 92, 93, 102, 123, 133,

137, 143, 222, 299
Carruccio, E., 227
Cartesius. See Descartes
cartography, 369
Casali, G. de, 135
Caspar, M., 192, 194
Castelnuovo, G., 271, 276, 311
casus irreducibilis, 63
Cataldi, P. M., Ill

catenoid, 413
catoptrics, 279
Catherine the Great, 31
Cauchy, A., 225, 341, 342, 368
Cavalieri, B., 193, 198, IV.5,

IV. 6, 227, 232, 243, 244, 263,
270, 271; principle of, IV.5

cell, 22
center of gravity, IV. 1, 224, 225
Chambre, M. C. de la, 393
characteristica geometrica, 123
Chasles, M., 158
chiffre, 2

Child, J. M., 254, 271

Chuquet, N., II.2, 60, 286
cipher, 2

Clagett, M., 135, 188
Clarke, A. A., 54
Clarke, F. M., 6
Claris mathematica, 93
Clavius, C., 299
Clerseleer, C. de, 279
Clifford, W. K., 165
clocks, 263
Cohen, M. R., 143
Colla, J., 71

Collins, J., 287, 290, 351
Colson, J., 284
combinations, 26, 123
Commandino, F., 188
commencement, 7

commutative law, 126
complete induction, 21, 25
concave, 179, 264, 267
concavity, 275
conchoid, 155, 179, 235
congruence: arithmetic, 49; geo-

metric, 416
conics, 163, 169, 178
continuum, 201, 202, 205
convergence, 309, 333
convex, 179, 240
convexity, 275
Coolidge, J. L., 313
coordinatae, 154, 272, 283
coordinates, polar, 256
cosa, 63, 77
cossists, 77
Cotes, R., 332
counterordinates, 242
counters, 4

couple, 313
Couturat, L., 124
Coxeter, H. S. M., 3, 187
Craig, J., 281
Cramer, G., 106, III. 10, 180, 413
Cramer’s paradox, 180
Crew, H., 198, 208
Crommelin, C. A., 269
cross ratio, 165
curvature, 298, 315, 392, V.23;

directions of, 416; see also

radius of curvature
curve: cubic, III.8, 406; eellike,

358, 364; elastic, 406; gener-
ating, 356, 360; logarithmic,

328
;
mechanical, 360

;
sine, 232,

234, 352; transcendental, 358
cusp, 177, 345
cyclocylindrique, 235
cycloid, 169, 198, 227, 232-238,

263, 264, 268, 276, 282, 376,
392, 394, 395, 398, 399; com-
panion, 232, 234, 237, 352,
406 (see also curve, sine);

elongated, 352, 356
cypher, 2, 12

D’Alembert, J. L., 55, 99, 115,
307, 341, V.14, V.16; theorem
of, 99

Davies, C., 49
DeBeaune, F., 253, 279, 280
d^blais et remblais, 416
decimal fractions, 1.3

decimal point, 7, 13

decimal position system, 1, 2, 4,

55

d6fault, 82, 91

defect, 91

De la Hire, P., 158
Del Ferro, S., 62
derivative, 272, 388, 391; par-

tial, 414
De Salvio, A., 198, 208
Desargues, G., 157, III. 6, 163,

164, 167, 238
Descartes, R., 55, 61, 74, 85,

II.7, 87, II.8, 93, 123, 133,

143, 145, III. 4, III.5, 158,

169, 222, 223, 225, 244, 253,

269, 270, 271, 279, 289, 367,

392; folium of, 168, 260; sign

rule of, 90
determinant, 180, 414
De triangulis omnimodis, 11,

133, III.

2

developpante, 264
d6velopp6e, 264
Dialogo sopra due massimi sis-

temi, 198, 208
diameter, 169, 170, 175
Dickson, L. E., 2, 47
Diderot, D., 341

difference, 272, 300, 407, 414;
of higher order, 345

differential, 271, 272, 300, V.8,

324, V.22; exact, 413; of

higher order, 342; second,

398; value, 402, 404
differentiare, 272
difformis, III. 1

dignitas, 307, 329
Dijksterhuis, E. J., 135, 137,

192, 208
dimension (degree), 94; fourth,

137, 144, 241
Dionysodorus, 195
Diophantine problems, 30
Diophantus, 26, 27, 29, 74, 76,

78, 81, 88, 220
dioptrics, 279, 392, 393
Dirichlet, P. G. L., 368
Discorsi i dimostrazioni, 1 98
Discours de la methode, 89, 150
Disme, La, 7

disparate, 126

divergence, 309
Divinity, 337
division, 4, 6, 10

double point, 178
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Drabkin, I. E., 143

ductus plani in planum, 242
Duhem, P., 208
Dupin, C., 419
duplication of an arc, 378
Dyksterhuis. See Dijksterhuis

Dynkin, E. B., 3

e, 846, 356, 360
edge of regression, 418
Edward VI, 4

ellipse, 148, 149, III.7, 194

ellipsoid, 419; see also spheroid

Ellis, C. A., 406
Encyclopedic, 341
Enestrom, G., 246, 332
enthymeme, 76
Enumeratio curvarvm, III. 8, 180
envelope, 315

epicycloid, 269
episagma, 194

equality, sign of, 4, 124

equation: biquadratic, II.4, 102;

cubic, II. 3, 102; derivative,

83; differential, 333, 381-383;
partial differential, V.16, of

second order, 404; primitive,

83; quadratic, 2, 63, 154, etc.;

transcendental, 111

Essay pour les coniques, III.

7

Eucharistia, 132

Euclid, 56, 58, 70, 74, 133, 134,

135, 140, 142, 158, 191, 222,

263, 299, 323
Eudoxus, 235
Euler, L., 13, 27, 28, 31, 1.8, 1.9,

1. 10, 1. 11, 49, 54, 55, 90, II. 10,

102, 111, 114, 115, 116, 119,

121, 178, III. 10, 232, 237, 249,

270, 279, 312, V.15, V.16, 368,

369, V.18, 378, 381, V.19,
V.21, 406, 407, 410

Eutocius, 188

Evans, G. W., 209
evolute, IV. 15, 272, 367, 406
evolution, 264, 272
evolvent, 264
Exercitaliones geometricae, 214
exhaustion, 344
exponents, broken, II.2, 286
extrapolation, 244

faction, 84, 85
Fagnano, G. C., 374, 376, V.18
Fatio de Duillier, N., 270, 404
Favaro, A., Ill, 198
Fermat, P. de, 26, 1.6, 1.7, 31,

35, 36, 38, 41, 44, 45, 74, 78,

133, III.3, 145, 157, 158, 178,

215, 217, IV.7, IV.8, 227, 231,

235, 393; last theorem of, 27,

1.9; numbers, 27
Fermat, S. de, 27, 30, 143

Ferrari, L., II.4, 69, 102
Feuilles d’analyse, 413
Fibonacci. See Leonardo of Pisa
Fibonacci series, 3

Fleckenstein, J. Q., 270
Florido, A. M., 63
fluent, 304
flux, 301

fluxion, 259, 270, 284, 285, 292,

300, 301, 303, 304, V.7; sec-

ond, 306, 335
Foncenet, F. D. de, 115
fonctions semblables, 106

Fontenelle, B. B. de, 342
Fourier, J. B. J., 368, 376
fractions: calculus of, 4; con-

tinuous, 3, 11.12, V.17, 374;
decimal, 7-11; partial, 99,

309 ; sexagesimal, 7 ;
unit, 220

Fraser, D. C., 332
Frederick the Great, 31, 369
Frenicle de Bessy, 27, 30, 36
Freudenthal, H., 25, 126
Frisch, C., 188, 192

Fuess, P. II., 47

fundamental theorem: of alge-

bra, 90, III. 10, III. 13; of the

calculus, IV. 10, V.2, V.3
function, 271, 272, 300, 327, 353,

367, 368, 388
;
algebraic, 368;

analytic, 383, 388; arbitrary,

352, 368; Beta, 251; cyclo-

metric, 327; derived, 391;
Gamma, 251

;
exponential,

346; hyperbolic, 363, 374;
logarithmic, 327, 346; primi-

tive, 391
;
transcendental, 368;

trigonometric, 346, 368, 374

Galande, La, 260
Galilei, G., 188, IV.3, IV.4, 227,

232, 367, 395
Galois, E., 102

games of chance, 21, 26
Gandz, S., 56
Gauss, C. F., 1, 46, 49, 54, 55,

90, 91, 99, 115, 11.13, 332
gemini, 6

gemowe, 4, 6

genita, V.6
genre, 155, 156, 157

genus, 155, 169

Geography, 133
geometer, 413
Geometria analytica, 284
Geometria indivisibilibus, IV. 5,

IV.

6

geometria determinatrix, 282

;

dimensoria, 282; situs, 121,

183

Geometrie, 89, II. 8, III.4, 169,

284
Geometrie descriptive, 413

geometry: analytic, III. 8, 346,
413; descriptive, 413; differ-

ential, 413; projective, 158
Gerhard of Cremona, 133
Gerhardt, C. I., 124, 271
ghosts of departed quantities,

333, 334, 338
Ginsburg, J., 317
Girard, A., 55, III.6, 81, 90, 95,

99

God, 131

Goldbach, C., 1.11, 47
golden section, 3
Gordian knot, 218
Grabiner, J. V., 391
Grandi, G., 179

Grant, E., 62, 135
Grassmann, H., 123, 144
gravity, law of, 285, 398
Gregory, J., 244, 253, 262, V.4,

287, 290, 332, 351

Grotius, H., 132

Grounde of artes, 4
group, cyclical, 2, 102

Guevara, G. di, 199

Guldin, P., 193-195
Gulliver's travels, 333

Halley, E., 334
Hamilton, W. R., 77, 392
harmonic series, 320-329
harmonic set, 160

Harriot, T., 87, 90, 91, 93, 265
Heath, T. L., 29, 56, 70, 74,

143, 188, 195, 220, 225, 228,

235, 299, 399
Heather, J. F., 413
Hedrick, E., 332
Heiberg, J. L., 226
Heijenoort, J. van, 124

Helen, 232
helicoid, right, 413
Hellinger, E. D., 253
Heilman, C. D., 11

Hermite, C., 374
Hessenberg, G., 374
Hett, W. S., 198
Hewlett, J., 38
hexagramma mysticum, 163
Hindu-Arabic system, 55
hippopede, 235
Hobson, E. W., 347
Hofmann, J. E., 242, 271, 291,

351

homogenea, 146

homogeneity, law of, 80, 143

Hooke, R., 364
Hopital, De 1’. See L’Hopital
hornlike angle, 299
Horologium oscillatorium, IV. 15

Horsley, S., 284, 332
Hughes, B., 140

Hutton, C., 265



424 INDEX

Huygens, C., 123, 168, 183, 188,

IV. 15, 263, 270, 271, 285, 354,

369, 392, 393, 395, 396
Hypatia, 178

hyperbola, 147, 148, 149, 155,

III. 7, 170, 173, 176, 220, 280,

288, IV.9, 323, 324; ambig-
enous, 173; converging, 173;

equilateral, 377
;

of higher

order, 170, 173, 174, 176, 219,

220, 222; redundant, 175

hyperbolic solid, IV.9

hyperboloid, 235
hypobibasm, 80

hypocycloid, 269
hypotenuse, 140

i = V -1, 348
imaginary, 90
index, 307, 329

indivisible, IV.3, IV.4, IV.5,

IV.

6

induction, complete, 21, 25

infinite, doctrine of the, 384

infinite descent, 36
infinity: actual, 198; point at,

160, 164; potential, 198; sym-
bol for, 251

inflexion, point of, 179, 180, 271,

275, 345

Institutiones calculi differentialis,

119, 122, 346, 368, 383
Instituzioni analytiche, 178
integral, 271; Beta, 251; Gam-

ma, 251 ;
definite, 376; elliptic,

326, V.18, 383; indefinite, 281

integration, partial, 227, IV. 12

intensio, 134

intercalation. See interpolation

interpolation: by Newton, 288,

289; Wallis, IV.13

Introductio in analysin, 13, 115,

249, V.15, 368
inverse tangent method (prob-

lem), 253, 271, V.2
involute, IV. 15

involution, III. 6, 159, 160, 167
irrational, 96, etc.

Tsagoge, In artem analyticem, 75
Islam, 1, 2, 4

isochrone, 398
isoperimetric problem, 399, 406

jabr, 56

Jacobi, C. G. J., 332, 414
Jefferson, T., 11

Jones, W., 249, 347
Jourdain, P. E. B., 368
Junius, Andreas, 12

Juskevic (Juschkewitch), A. P.,

47, 383

Karpinski, L. C., 4, 56, 58
Kasner, E., 299
Kennedy, E. S., 56
Kepler, J., 138, 188, 191, 192,

IV.2, 222, 225; equation, 192;

problem, 287
Key to arithmetic, 7, 21

Khayyam, O., 58
kinematic, 222, 235, 253
Klein, F., 299, 332
Kluegel, G. S., 198

Klug, R., 192

Kneale, W. and M., 124

Knott, C. G., 12

Konigsberg, bridges of, III. 11

Kowalewski, A., 332
Kowalewski, G., 217, 272, 281,

283, 312, 320
Kronecker, L., 46

Lagny, T. G. de, 347
Lagrange, P. L., 1, 102, II. 11,

11.12, 115, 137, 368, 369, 383,
V.19, 399, 405, V.22, 413

Lalouvere, A. de, 235
Lambert, J. H., 369, V.17
Landen, J., 383, V.19, 389
Laplace, 270
Laputa, 333
Latham, M. L., 90, 155, 169

Latin Europe, 1, 2

latitude of forms, III.l, 367
latitudo, III.l

latus: rectum, 170; transversum,

170, 228; versum, 228, 229
least action, principle, 406
Lectiones geometricae, IV. 14, 281
Legendre, A. M., 1, 46, 49, 87,

369, 413, 414
Leibniz, G. W., 74, 99, 11.14,

154, 165, 168, 180, 183, 225,

239, 242, 270, 271, V.l, V.2,

V.3, 285, 287, 300, 303, 309,

312, 316, 325, 327, 328, 332,

342, 367, 392, 393, 395, 396,

419; series of, 287, 351

lemniscate, 376, 377, 378
lemon, 192

Leonardo da Vinci, 208
Leonardo of Pisa, 1, 2, 1.1, 111

Lewis, C. I., 124

L’Hopital, G. F. A. de, 178, 270,

312, V.8, 324, 392, 404; rule

of, 312, 315, 316
Liber abaci, 1

limagon, 235
limit, 190, 220, 222, 292, 303,

321, V.14, 344
limits of roots, 96-98
Lindemann, F., 374
lineolae, 329
lines of curvature, 417, 418
lingua generalis, 123

Linsenbarth, H., 406
locus: plane, 145, 149, 150; solid,

145

Loemker, L. E., 124

logarithmic flavor, 193

logarithmic series, 280, 290
logarithmic terms, 99
logarithms, 280, 290, 291, 346,

404; natural, 16; of Briggs,

280; of Napier, 1.4, 279, 280
logic, mathematical, 11.14

logistica: numerosa, 75, 78; spe-

ciosa, 75, 76, 78, 88, 90, 281
Lohne, J. A., 93
longitudo, III.l

Loria, G., 180, 227, 341

loxodrome, 253
Lucas, E., 184

Luckey, P., 7

Lullio, R., 123

Macdonald, W. R., 12

machines, 155

Maclaurin, C., 95, 168, 180, 181,

270, 332, 338, V.l 3, 388; series

of, 333
Mahnke, D., 239
Maier, A., 208, 231
Mary Tudor, 4

Maurice of Orange, 189

maximum, IV.8, V.l, 315, 338,

345, 393, V.21

Menelaus, 163, 164, 166

Mengoli, P., 276, 320
Mercator, N., 280, 284, 324

meridians, 417
Mersenne, M., 27, 223, 225, 227,

231, 232, 235, 270, 284; num-
bers, 27

Mertonian rule, 137

Meschkowski, H., 21

metaphysics of the calculus, 342,

V.19
method: of indivisibles, 209,

IV.5, etc.; of infinite descent,

36
Methodus fluxionum (Method of

fluxions), 284, 285, 311, 312

Methodus incrementorum, 328
Methodus inveniendi, 399
Meusnier, J. B., 413
minimum, IV.8, V.l, 315, 338,

345, 393, V.21

Mirifici logarithmorum canonis

descriptio, 11

Mirifici logarithmorum canonis

constructs, 12-21

Mitchell, H. G., 374
Moebius, A. F., 274
Mohler, N. M., 333
Moivre, A. de, 348
moments, V.6, 303, 311, 312

Monge, G., 274, 413, V.23
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Montaregio. See Regiomontanus
Montmort, P. R. de, 123

Mordell, J. L., 27
Mors, H., 3
motion, accelerated, 208
Motte, A., 292, 300, 301

Mulcrone, T., 275
multiplication, 8

Murdock, J., 135

muqabala, 56
music, 193, 363

Napier, J., 11, 12, 1.4, 279
Nasir-ed-din, 138
Needham, J., 21

negative, 67, 79, 94
Neper. See Napier
Netto, E., 54, 122

Newton, I., 1, 35, 90, 93, 94, 110,

111, 154, 155, III. 8, 179, 180,

225, 244, 249, 253, 259, 270,

271, 280, V.4, V.5, V.6, V.7,

329, 333, 334, 338, 343, 344,

354, 367, 388, 392, 404; bino-

mial series, 35, 285, 286; inter-

polation formula, 332
;
rule on

limits of roots, 96-98; sums,
95

Nicole, F., 168

Nicolson, M., 333
Nicomedes, 235
Nieuwentijt, B., 280, 342, 398
Nilakantha, 351

Noble, C. A., 332
node, 177, 362
noeud, 158, 362
Nogu&s, R., 27

nonhomogeneity, principle of,

III.4

nonresidue, 42, 44, 46
normal, 157, 256, 267, 367, 414-

417

Norton, R., 7

Nova stereometria doliorum, 188,

192, 222

number: Bernoulli, 317; com-
plex, 81, 99, 102; Fermat, 27;
fictitious, 67 ;

imaginary, 63,

67, 90) irrational, 95; Mer-
senne, 27; negative, 67, 79,

94; prime, 1.6, 1.8, 1. 10, 1. 11,

1.12; real, 90
Nunez, P., 253
Nunn, T. P., 251

Oldenburg, H., 270, 271, 284,

285, 287
Oldfather, W. A., 406
oligochrone, 398
omnes lineae, 214-216, 271
operational notation, 329
Opticks, 168, 303
optics, 279

Opus palatinum, 133
ordinate, 148, 169, 183, 240, 272,

296, 313

ordonnance, 158, 163
Ore, O., 27, 63
Oresme, N., 62, 133, III.l, 134,

208, 231, 286, 320, 367; rule,

208
orthogonal trajectories, 396
osculating plane, 419
osculation, 419
Osmond, P. C., 253
Oughtred, W., 93
oval, 175, 176

Panton, A. W., 98, 103, 183
Pappus, 74, 75, 88, 90, 133, 143,

146, 152, 154, 155, 157, 158,

195, 399; problem of, 143, 144,

154, 155, 157

parabola, 157, III. 7, 171, 221,

232, 343, 344, 399; cubic, 169,

178, 245; diverging, 173-178;
of higher order, 225, 375;
Neilian, 169; quadrature of,

219
paraboloid, 225-227
paradox: of Cramer, 180; of

Zeno, see Zeno
parallelogram of velocities, 198
parallels, 417
parameter, 272
paria coniculorum, 2

parodic, 77
Pascal, B., 21, 1.5, 84, 137, III. 7,

232, 237, IV.ll, IV. 12, 271,

284; theorem of, III.7; tri-

angle, 1.5, 84, 285
Pascal, E., 163

Patterson, L. D., 6
Peletier, J., 299
Pell, J., 29; equation, 29, 30
pencil, 158, 163, 168

pendulum, tautochrone, 263
pendulum clock, 263
permutations, 102, 123

Perron, O., Ill

Perspectiva, 138

perspective, 158, 369
perspective triangles, 162, 163
Pertz, G. H., 271

phyllotaxis, 3

x, 194, IV.13, 346, 347, 354, 356,

369
Pitiscus, B., 140

planetary orbits, 194, 287
Plato, 88, 188
Pliicker, J., 169

point: at infinity, 160, 164; of

inflection, 179^ 180, 271, 275,

345
point calculus, 123

polygon, spherical, 87

polar coordinates, 256
polar properties, 161

porism, 158

poristic, 74, 80
positive, 79
Poudra, N. G., 158
power, 307

power residues, 3, 1.8

Prag, A., 244
predicate, 82
prime, 8

prime and ultimate ratios, 303,
306

prick, 308
pricked letters, 284
Principia, 270, 285, 292, 300,

303, 332, 354, 356, 369, 404
principle: of least action, 406; of

virtual variations, 227
Pringsheim, A., 332, 368
probability, 123, 124, 317
problem: inverse tangent, 253,

271, V.2; linear, 143, 145, 155;
of Pappus, see Pappus

;
plane,

143, 155; rabbit, 1.1; solid,

143, 155; topological, 183
Proclus, 299
Progress Tabulen, 12
progression: arithmetic, 12; geo-

metric, 12, 220-222

projective pencil, 168

projectivity, 160
Ptolemy, 11, 133

quadrans, 283
quadrare, 283
quadratrix, 169, 255, 260, 283
Quadratura curvarum, 285, 334
quadrature: approximate, 332;

of circle, see x; of hyperbola,

99, 219, 282, 327 ;
of parabola,

219
Quaestiones super geometriam

euclideam, 134
quantity: continuously propor-

tional, 302; evanescent, 299,

300, 305; irrational, 75, 95)
nascent, 299, 300, 305; non-
Archimedean, 299 ;

rational,

75, etc.; transcendental, 346,

374
Questions in mechanics, 198, 199

rabbit problem, 2

radicals, 27

radius of curvature, 269, 315,

406, 417, 419
Rajagopal, C. T., 351
rameau, 158, 160

Ratdolt, E., 133
ratio: duplicate, 246; first, 304;

prime and ultimate, V.5, 303,

306; sesquitertia, 193; sub-
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duplicata, 246, 394; subtrip-

licata, 246; ultimate, 304, 305;
reciprocity theorem, 46, 1.12

Recorde, R., 4, 1-2, 91, 95
reductio ad absurdum, 188, 190,

195, 299
reflection, 279
refraction, 279, 393, 399
Regiomontanus, J., 11, 133,

III.2, 140
Regulae ad directionem ingenii,

87

Reiff, R., 333
remissio, 134

R6mond. See Montmort
res, 63, 77
Residual analysis, 383, 386
residues: power, 2, 1.8; quad-

ratic, 1. 10

resolvent, 103

Rhaeticus, G. J., 133

Riemann, B., 368
Rigaud, S. J., 287
ring, 195-197, 235
Ritter, F., 75, 81

Robert of Chester, 1, 56
Roberval, G. P. de, 215, 217,

224, 225, 227, 230, 231, 232,

IV. 10, 238, 239, 352
Rogier, L. J., 132

Rolle, M., 119, 342
Romanus (van Roomen), A.,

194

roots: complex, 63, 69, 81, 99,

102; cube, 2, 286; negative,

90; positive, 56, 90, 91; sym-
metric functions of, 84, 85, 94

;

true, II.8

Rosen, F., 56
rota Aristotelis, 198, 205, 232
Rothe, P., 85
rouleau, 161

roulette, 232
Rouse Ball, W., 187

Rozenfel’d, B., 21

Rudio, F., 369
Rudolff, C., 7

Sagredo, IV.3

Saint-Vincent, G. de, 242, 280
Salviati, IV.3

Sanford, V., 7

Sarasa, A. A. de, 280
scalar, 77

scalares, 77
Schafheitlin, P., 312
scholastic, 134
Scholtz, H., 124

Schooten, F. van, 75, 78, 81, 284
Schroder, K., 380, 384
scientia universalis, 123
Scott, J. F., 12, 63, 90, 244, 291

Scriba, C. J., 280
Seki Kowa (Takakusu), 180
series: arithmetic, 11, 26; bino-

mial, V.4, 346; Fibonacci, 3;

geometric, 12, 323; harmonic,
320-324; infinite, V.9, etc.; of

Maclaurin, 333; of Taylor,
V.ll, 338, 346, 388-391

shadows, 178

Siegel, L. L., 380
Simplicio, IV.3

sine, 11, 14, 16, 21, 236, 237,

IV.ll, 367; curve, 232, 234,

352, see also cycloid, compan-
ion of; table, 141

sinus: rectus, 140, 141, 249;
totus, 16, 140, 347, 394;
versus, 140, 142, 237, 238,

298, 342
Smith, D. E., 4, 7, 21, 25, 26,

61, 63, 90, 111, 155, 163, 169,

317, 347
Smith, J. W., 75

solidus, 114

soul, 131

species, 76

Speiser, A., 108, 121, 184

sphere, volume, 197

spherical polygon, 87
spherical triangle, 87, 142

spheroid, 235
Spiess, O., 313
spiral, 169, 227, 231

;
of Archi-

medes, 222; logarithmic, 269
Staeckel, P., 392, 400, 407
step figure, 231

Stevin, S., 4, 1.3, 7, 12, 58, 81,

83, 86, 93, 188, IV. 1, 253
Stewart, J., 303
Stirling, J., 168

Stone, E., 313
Strain, H., 374

Strata, 198
string, vibrating, 328, V.16
Struik, D. J., 313
stump, 159

subalternate, 126

subtangent, 272

subtense, 297
subtraction, 4, 9; logical, 132

Suiseth, R., 134, 231

Sung, 21

sunya, 2

surd, 95

surfaces: canal, 413; develop-

able, 413, 416-418; minimal,

413; of revolution (rotation),

195, 225-227, V.9, 413, 417;
quadric, 225, 235, 346

Swift, J., 333
syllogism, 76, 11.14, 190
synchrone, 392, 395
synthesis, 74, 75, 80

table: logarithmic, 12; radical,

18, 19; sine, 141; trigonomet-
ric, 133

Talbot, C. R. M., 168, 170
tangent, 157, 222, 223, 227, 234,

254, 276, 367
Tannery, P., 74, 90, 253
Tartaglia, N., 62, 63, 64
Taton, R., 158, 161, 163, 413
tautochrone, 263, 392, 395
Taylor, B., 270, 287, 311, 328,

V.ll, 338, 339, 351, 356, 357,

361, 362, 364, 365, 368, 383;
series of, V.ll, 338, 346, 388-
391

tetragonizein, 219
Theon, 74, 77
Theophrastus, 198

ThSorie analytique de la chaleur,

376
ThSorie des fonctions analytiques,

383, 388
Thiende, De, 7

Thompson, D’A. W., 3

time, 138, 303, 304, 338
Torricelli, E., 198, 215, 218, 219,

222, 227, IV.9, 243, 253, 284,

324

torus, 195

Tractatus de curvatura curvarum,

285, V.7, 344
Tractatus de latitudinibus forma-
rum, 134

Traite de la lumiere, 393
Traite des indivisibles, 232
Traite des sinus du quart de

cercle, 239
Traits des trilignes, 241
Traits du triangle arithmetique,

21, 84

transcendental, 276, 281, 282,

327, 346, 358, 366, 368
Treatise of fluxions, 338
tree, 159

Treviso arithmetic, 4
triangle: arithmetic, 1.5, 84;

center of gravity of, 187-191;
characteristic, 222, 238, 239,

259, 260, 282, 283; spherical,

87, 142

trigonometry, 11, 138, 140, V.15
triligne, 240, 242, 283
trilinear figure. See triligne

Triparty, 1 1.

2

triply orthogonal systems, 419
trochoid, 232, 357, 365
trochoides, socia, 352
tronc, 158, 159

Tropfke, J., 55, 193, 276
Truesdell, C., 352
trunk, 159

Tschirnhaus, W. von, 103, 287,

392



INDEX 427

Turnbull, H. W., 94, 253, 285,

290, 291, 311, 332, 338
Tweedie, C., 181

twig, 158

twin, 6, 159

uniformiter difformis, 134

Universal arithmetic, 91, 94, 110
Uspenski, W. A., 3

vacuum, 202; of Torricelli, 227
Valerio, L., 188, 191, 192, 204
Vandiver, H. S., 27
Vassura, G., 227
Vedamunthi Aiyar, T. D., 351
velocity, ultimate, 299, 300
Ver Eecke, P., 143

versed sine. See sinus versus
Vifcte, F., 56, 63, 74, II.5, 93,

123, 133, 137, 143, 222, 281,

299
virtus activa, 138
Vitellio, 138

Vorob’ev, N. N., 3

Vuillemin, J., 108

Waard, C. de, 27

Walker, E., 232
Wallis, J., 29, 90, 111, 137, 217,

IV. 13, U4, 263, 270, 284-288,

299, 317
Waring, E., 49, 106, 272
Weber, H., 374
Weierstrass, K., 115

Wellstein, J., 374
Wheel of Aristotle. See rota

Whetstone of witte, The, 4-6
Whiston, W., 94

Whiteside, D. T., 189, 285, 312
Whitman, E. A., 233
Williamson, B., 179
Winter, E., 47
witch, 178

Witelo, 138

Witmer, T. R., 69, 72
Woodhouse, R., 334
Woude, W. van der, 269
Wythof, W. A., 3

Yang Hui, 21

Zeno, 134, 188, 299, 338, 341
Zenodorus, 399
zephirum, zephyr, 2
zero, 2

zetetics, 74, 75, 80
Ziffer, 2
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